-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_language_only.py
executable file
·283 lines (249 loc) · 11.9 KB
/
train_language_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import json
import argparse
from typing import List, Dict
import glob
import os
import pathlib
import pdb
import subprocess
from io import StringIO
import torch
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
import logging
from tqdm import tqdm
from matplotlib import pyplot as plt
import numpy as np
import torch.autograd.profiler as profiler
from torch.nn import functional as F
import pandas as pd
import kornia
from encoders import LSTMEncoder
from language_only import LanguageEncoder
from language_embedders import RandomEmbedder
from unet_module import BaseUNet, UNetWithLanguage, UNetWithBlocks
from unet_shared import SharedUNet
from mlp import MLP
from data import DatasetReader
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
class LanguageAloneTrainer(FlatLanguageTrainer):
def __init__(self,
train_data: List,
val_data: List,
encoder: LanguageEncoder,
optimizer: torch.optim.Optimizer,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
depth: int = 7,
best_epoch: int = -1,
zero_weight: float = 0.05):
super(LanguageAloneTrainer, self).__init__(train_data,
val_data,
encoder,
optimizer,
num_epochs,
num_blocks,
device,
checkpoint_dir,
num_models_to_keep,
generate_after_n,
depth,
best_epoch)
self.xent_loss_fxn = torch.nn.CrossEntropyLoss()
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
for b, batch_instance in tqdm(enumerate(self.train_data)):
self.optimizer.zero_grad()
lang_outputs = self.encoder(batch_instance)
loss = self.compute_loss(batch_instance, lang_outputs)
loss.backward()
self.optimizer.step()
print(f"skipped {skipped} examples")
print(f"Validating epoch {epoch}...")
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.val_data)):
block_acc = self.validate(dev_batch_instance, epoch, b, 0)
total_block_acc += block_acc
total += 1
mean_block_acc = total_block_acc / total
print(f"Epoch {epoch} has block acc {mean_block_acc * 100}")
return mean_block_acc, 0.0
def compute_loss(self, inputs, lang_outputs):
pred_next_block_logits = lang_outputs["pred_block_logits"]
true_next_block_idxs = inputs["block_to_move"]
true_next_block_idxs = true_next_block_idxs.to(self.device).long().reshape(-1)
block_loss = self.xent_loss_fxn(pred_next_block_logits, true_next_block_idxs)
return block_loss
def validate(self, batch_instance, epoch_num, batch_num, instance_num):
self.encoder.eval()
#pdb.set_trace()
lang_outputs= self.encoder(batch_instance)
block_accuracy = self.compute_block_accuracy(batch_instance, lang_outputs)
return block_accuracy
def main(args):
if args.binarize_blocks:
args.num_blocks = 1
device = "cpu"
if args.cuda is not None:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
device = torch.device(device)
print(f"On device {device}")
test = torch.ones((1))
test = test.to(device)
# load the data
dataset_reader = DatasetReader(args.train_path,
args.val_path,
None,
batch_by_line = args.traj_type != "flat",
traj_type = args.traj_type,
batch_size = args.batch_size,
max_seq_length = args.max_seq_length,
do_filter = args.do_filter,
top_only = args.top_only,
binarize_blocks = args.binarize_blocks)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not args.test:
print(f"Reading data from {args.train_path}")
train_vocab = dataset_reader.read_data("train")
try:
os.mkdir(checkpoint_dir)
except FileExistsError:
pass
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
print(f"Reading data from {args.val_path}")
dev_vocab = dataset_reader.read_data("dev")
print(f"got data")
# construct the vocab and tokenizer
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
# get the encoder from args
if args.encoder == "lstm":
encoder = LSTMEncoder(input_dim = args.embedding_dim,
hidden_dim = args.encoder_hidden_dim,
num_layers = args.encoder_num_layers,
dropout = args.dropout,
bidirectional = args.bidirectional)
else:
raise NotImplementedError(f"No encoder {args.encoder}") # construct the model
encoder = LanguageEncoder(embedder,
encoder,
device )
if args.cuda is not None:
encoder= encoder.cuda(device)
print(encoder)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters())
#optimizer = torch.optim.SGD(encoder.parameters(), lr = 0.01 )
best_epoch = -1
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.json"), "w") as f1:
json.dump(args.__dict__, f1)
# construct trainer
trainer = LanguageAloneTrainer(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = 110,
depth = 0,
best_epoch = best_epoch,
zero_weight = 0)
trainer.train()
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
trainer = LanguageAloneTrainer(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = 110,
depth = 0,
best_epoch = best_epoch,
zero_weight = 0)
print(f"evaluating")
eval_trainer.evaluate()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# training
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
# data
parser.add_argument("--train-path", type=str, help="path to train data")
parser.add_argument("--val-path", type=str, help = "path to dev data" )
parser.add_argument("--num-blocks", type=int, default=20)
parser.add_argument("--binarize-blocks", action="store_true", help="flag to treat block prediction as binary task instead of num-blocks-way classification")
parser.add_argument("--traj-type", type=str, default="flat", choices = ["flat", "trajectory"])
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--max-seq-length", type=int, default = 65)
parser.add_argument("--do-filter", action="store_true", help="set if we want to restrict prediction to the block moved")
parser.add_argument("--top-only", action="store_true", help="set if we want to train/predict only the top-most slice of the top-down view")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove"])
parser.add_argument("--embedding-dim", type=int, default=300)
# language encoder
parser.add_argument("--encoder", type=str, default="lstm", choices = ["lstm", "transformer"])
parser.add_argument("--encoder-hidden-dim", type=int, default=128)
parser.add_argument("--encoder-num-layers", type=int, default=2)
parser.add_argument("--bidirectional", action="store_true")
# block mlp
parser.add_argument("--compute-block-dist", action="store_true")
parser.add_argument("--mlp-hidden-dim", type=int, default = 128)
parser.add_argument("--mlp-num-layers", type=int, default = 3)
# misc
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
args = parser.parse_args()
main(args)