-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtouch.py
executable file
·486 lines (434 loc) · 22.4 KB
/
touch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
import time
import cv2
from robot import Robot
import threading
import os
import utils
from logger import Logger
# TODO(adit98) put this in utils/get from somewhere else?
from generate_sim_stacking_demo import get_and_save_images
import argparse
class HumanControlOfRobot(object):
"""Creates a color and depth opencv window from the robot camera, gets human keyboard/click, and moves the robot.
Keyboard Controls:
'c': set self.stop to True indicating it is time to exit the program.
'a': autonomous mode, sets self.human_control = False, clicks will have no effect (unless move_robot=False).
'z': human control mode, sets self.human_control = True, clicks will move the robot (unless move_robot=False).
'h': go home.
'j': stay in place after pushing, grasping, and placing (self.go_home=False).
'm': Automatically home when pushing, grasping, and placing (self.go_home=True).
'g': set self.action = 'grasp', left click in the 'color' image window will do a grasp action.
'p': set self.action = 'place', left click will do a place action.
's': set self.action = 'push', left click will slide the gripper across the ground, aka a push action.
't': set self.action = 'touch', left click will do a touch action (go to a spot and stay there).
'r': repeat the previous action and click location after applying any settings changes you made to action/angle.
'1-9': Set the gripper rotation orientation at 45 degree increments, starting at the angle 0. Default is '5'.
'b': set self.action = box, left click will move the robot to go get the box and dump the objects inside.
'[': set self.robot.place_task = False, a successful grasp will immediately drop objects in the box.
']': set self.robot.place_task = True, a successful grasp will hold on to objects so the robot can place them.
' ': print the current robot cartesian position with xyz and axis angle and the current joint angles.
'-': close gripper
'=': open gripper
'k': calibrate with the ros api in calibrate_ros.py
Member Variables:
self.stop: if True shut down your program, pressing 'c' on the keyboard sets this variable to True.
"""
def __init__(self, robot=None, action='touch', human_control=True, mutex=None, move_robot=True,
logger=None, task_type=None, save_img=False):
self.stop = False
self.print_state_count = 0
self.tool_orientation = [0.0, np.pi, 0.0] # Real Good Robot
self.human_control = human_control
self.move_robot = move_robot
self.action = action
self.logger = logger
self.all_action_log = []
self.successful_action_log = []
self.heightmap_pairs = []
self.img_pairs = []
self.trial = 0
self.click_count = 0
self.click_position = None
self.target_position = None
# go home automatically during push, grasp place actions
self.go_home = True
self.calib = None
self.task_type = task_type
self.save_img = save_img
if robot is None:
# workspace_limits = np.asarray([[0.3, 0.748], [-0.224, 0.224], [-0.255, -0.1]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
# self.tool_orientation = [2.22,-2.22,0]
# ---------------------------------------------
# Move robot to home pose
self.robot = Robot(False, None, None, workspace_limits,
tcp_host_ip, tcp_port, rtc_host_ip, rtc_port,
False, None, None)
robot.open_gripper()
else:
self.robot = robot
if is_sim:
# reset objects so we have correct progress
self.reset_sim()
# Slow down robot
# robot.joint_acc = 1.4
# robot.joint_vel = 1.05
self.grasp_angle = 4.0
self.grasp_success, self.grasp_color_success = False, False
self.place_success = False
if mutex is None:
self.mutex = threading.Lock()
# Callback function for clicking on OpenCV window
self.click_point_pix = ()
# wait a second for things to initialize
time.sleep(1)
self.camera_color_img, self.camera_depth_img = robot.get_camera_data(go_home=False)
def mouseclick_callback(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN or event == cv2.EVENT_RBUTTONDOWN:
# global camera, robot, self.click_point_pix, action, self.grasp_angle, self.grasp_success, self.grasp_color_success, self.mutex
self.click_point_pix = (x,y)
# Get click point in camera coordinates
click_z = self.camera_depth_img[y][x] * robot.cam_depth_scale * 1000 # unit from m -> mm
click_x = np.multiply(x-robot.cam_intrinsics[0][2],click_z/robot.cam_intrinsics[0][0])
click_y = np.multiply(y-robot.cam_intrinsics[1][2],click_z/robot.cam_intrinsics[1][1])
if click_z == 0:
print('Click included invalid camera data, ignoring the command.')
return
click_point = np.asarray([click_x,click_y,click_z]) / 1000 # Convert from unit from mm to m
click_point.shape = (3,1)
# Convert camera to robot coordinates
# camera2robot = np.linalg.inv(robot.cam_pose)
camera2robot = robot.cam_pose # The transformation matrix is from meter to meter
target_position = np.dot(camera2robot[0:3,0:3],click_point) + camera2robot[0:3,3:]
target_position = target_position[0:3,0]
heightmap_rotation_angle = self.grasp_angle * np.pi / 4
# print(target_position, self.tool_orientation)
if not self.human_control:
print('Human Control is disabled, press z for human control mode, a for autonomous mode')
with self.mutex:
self.click_position = target_position.copy()
self.target_position, heightmap_rotation_angle = self.execute_action(target_position, heightmap_rotation_angle)
# Show color and depth frames
cv2.namedWindow('depth')
cv2.namedWindow('color')
cv2.setMouseCallback('color', mouseclick_callback)
self.print_config()
def execute_action(self, target_position, heightmap_rotation_angle):
# log env state (demo/trial num is the poststring for saved heightmaps)
depth_heightmap, color_heightmap, _, color_img, depth_img = get_and_save_images(self.click_count,
self.robot, self.logger, self.action, save_image=False)
self.heightmap_pairs.append((depth_heightmap, color_heightmap))
self.img_pairs.append((depth_img, color_img))
self.target_position = target_position
self.click_count += 1
def grasp(tp, ra, gh):
# global self.grasp_success, self.grasp_color_success, self.mutex
with self.mutex:
# log action (grasp)
self.all_action_log.append(tp.tolist() + [ra, utils.ACTION_TO_ID['grasp']])
self.grasp_success, self.grasp_color_success = robot.grasp(tp, ra, go_home=gh)
def place(tp, ra, gh):
# global self.grasp_success, self.mutex
with self.mutex:
# log action (place)
self.all_action_log.append(tp.tolist() + [ra, utils.ACTION_TO_ID['place']])
self.place_success = self.robot.place(tp, ra, go_home=gh)
self.grasp_success = False
if self.place_success:
# if we had a successful place, add the last 2 actions (grasp and place) to log
self.successful_action_log += self.all_action_log[-2:]
# get last two pairs of heightmaps
heightmap_pairs = self.heightmap_pairs[-2:]
depth_grasp, color_grasp = heightmap_pairs[0]
depth_place, color_place = heightmap_pairs[1]
if self.logger is not None:
# save heightmaps (and images)
self.logger.save_heightmaps(self.click_count, color_grasp,
depth_grasp, 'grasp', poststring=self.trial)
self.logger.save_heightmaps(self.click_count, color_place,
depth_place, 'place', poststring=self.trial)
if self.save_img:
img_pairs = self.img_pairs[-2:]
depth_grasp_img, color_grasp_img = img_pairs[0]
depth_place_img, color_place_img = img_pairs[1]
self.logger.save_images(self.click_count, color_grasp_img,
depth_grasp_img, 'grasp')
self.logger.save_images(self.click_count, color_place_img,
depth_place_img, 'place')
if self.action == 'touch':
# Move the gripper up a bit to protect the gripper (Real Good Robot)
def move_to(tp, ra):
# global self.mutex
tp = tp.copy()
# move to a spot just above the clicked spot to avoid collision
tp[-1] += 0.04
with self.mutex:
# self.robot.move_to(target_position, self.tool_orientation)
self.robot.move_to(tp, heightmap_rotation_angle=ra)
if self.move_robot:
t = threading.Thread(target=move_to, args=(target_position, heightmap_rotation_angle))
t.start()
elif self.action == 'grasp':
# make sure we should be grasping
if not self.robot.place_task or (self.robot.place_task and not self.grasp_success):
if self.move_robot:
t = threading.Thread(target=grasp, args=(target_position, heightmap_rotation_angle, self.go_home))
t.start()
# above check failed, need to place
else:
# adjust z height
target_position[-1] += 0.01
if self.move_robot:
self.action = 'place'
t = threading.Thread(target=place, args=(target_position, heightmap_rotation_angle, self.go_home))
t.start()
elif self.action == 'box':
t = threading.Thread(target=lambda: self.robot.restart_real())
t.start()
elif self.action == 'push':
target_position[-1] += 0.01
t = threading.Thread(target=lambda: self.robot.push(target_position, heightmap_rotation_angle, go_home=self.go_home))
t.start()
elif self.action == 'place':
# check if we should be grasping even though place was specified
if not self.grasp_success:
t = threading.Thread(target=grasp, args=(target_position, heightmap_rotation_angle, self.go_home))
t.start()
else:
# adjust z height
target_position[-1] += 0.01
t = threading.Thread(target=place, args=(target_position, heightmap_rotation_angle, self.go_home))
t.start()
print(str(self.click_count) + ': action: ' + str(self.action) + ' pos: ' + str(target_position) + ' rot: ' + str(heightmap_rotation_angle))
return target_position, heightmap_rotation_angle
def print_config(self):
# global robot
state_str = 'Current action: ' + str(self.action) + '. '
state_str += 'Grasp, HOLD, PLACE object task, ' if self.robot.place_task else 'Grasp then drop in box task, '
state_str += 'robot WILL go home after push/grasp/place' if self.go_home else 'robot will NOT go home after push/grasp/place'
if self.task_type == 'vertical_square':
print(self.robot.vertical_square_partial_success(np.ones(4), check_z_height=False, stack_dist_thresh=0.04))
print(state_str)
elif self.task_type == 'row':
print(self.robot.check_row(np.ones(4), check_z_height=False))
print(state_str)
else:
print(state_str)
def run_one(self, camera_color_img=None, camera_depth_img=None):
if camera_color_img is None:
shape = [0, 0, 0, 0]
# get the camera data, but make sure all the images are valid first
while not all(shape):
self.camera_color_img, self.camera_depth_img = self.robot.get_camera_data(go_home=False)
shape = self.camera_color_img.shape + self.camera_depth_img.shape
else:
self.camera_color_img = camera_color_img
self.camera_depth_img = camera_depth_img
if len(self.click_point_pix) != 0:
self.camera_color_img = cv2.circle(self.camera_color_img, self.click_point_pix, 7, (0,0,255), 2)
self.camera_color_img = cv2.cvtColor(self.camera_color_img, cv2.COLOR_RGB2BGR)
cv2.imshow('color', self.camera_color_img)
cv2.imshow('depth', self.camera_depth_img)
key = cv2.waitKey(1)
# Configure the system
# Numbers 1-9 are orientations of the gripper
# t is touch mode, where the robot will go to the clicked spot
if key == ord('1'):
self.grasp_angle = 0.0
elif key == ord('2'):
self.grasp_angle = 1.0
elif key == ord('3'):
self.grasp_angle = 2.0
elif key == ord('4'):
self.grasp_angle = 3.0
elif key == ord('5'):
self.grasp_angle = 4.0
elif key == ord('6'):
self.grasp_angle = 5.0
elif key == ord('7'):
self.grasp_angle = 6.0
elif key == ord('8'):
self.grasp_angle = 7.0
elif key == ord('9'):
self.grasp_angle = 8.0
elif key == ord('t'):
self.action = 'touch'
self.print_config()
elif key == ord('g'):
self.action = 'grasp'
self.print_config()
elif key == ord('s'):
self.action = 'push'
self.print_config()
elif key == ord('p'):
self.action = 'place'
self.print_config()
elif key == ord('b'):
self.action = 'box'
self.print_config()
elif key == ord('r'):
heightmap_rotation_angle = self.grasp_angle * np.pi / 4
with self.mutex:
self.target_position, heightmap_rotation_angle = self.execute_action(self.click_position.copy(), heightmap_rotation_angle)
elif key == ord(']'):
with self.mutex:
# Mode for stacking blocks
self.robot.place_task = True
self.print_config()
elif key == ord('['):
with self.mutex:
# Mode for grasping to hold and then place
self.robot.place_task = False
self.print_config()
elif key == ord(' '):
with self.mutex:
# print the robot state
self.print_state_count += 1
state_data = self.robot.get_state()
actual_tool_pose = self.robot.parse_tcp_state_data(state_data, 'cartesian_info')
robot_state = 'UR5 axis/angle cart_pose format: ' + str(actual_tool_pose)
actual_tool_pose = utils.axis_angle_and_translation_to_rigid_transformation(actual_tool_pose[:3], actual_tool_pose[3:])
joint_position = self.robot.parse_tcp_state_data(state_data, 'joint_data')
robot_state += ' joint pos: ' + str(joint_position) + ' homogeneous cart_pose: ' + str(actual_tool_pose)
print(str(self.print_state_count) + ' ' + robot_state)
elif key == ord('f'):
if self.logger is not None:
# finish trial, write actions (only the successful ones), and move to next trial
self.logger.write_to_log('executed-actions-' + str(self.trial),
self.successful_action_log)
self.logger.write_to_log('all-actions-' + str(self.trial), self.all_action_log)
# write current heightmap
depth_heightmap, color_heightmap, _, color_img, depth_img = get_and_save_images(self.click_count,
self.robot, self.logger, self.action, save_image=False)
self.logger.save_heightmaps(self.click_count + 1, color_heightmap,
depth_heightmap, 'end', poststring=self.trial)
if self.save_img:
self.logger.save_images(self.click_count + 1, color_grasp_img,
depth_grasp_img, 'end')
self.trial += 1
# clear logs
self.all_action_log = []
self.successful_action_log = []
# NOTE(adit98) figure out how to show next img before action selection
# finish trial and move to next trial
# keep repositioning objects until we start from 1st step
if is_sim:
self.reset_sim()
elif key == ord('c'):
if self.logger is not None:
# we stopped the program, write actions (only the successful ones)
self.logger.write_to_log('executed-actions-' + str(self.trial),
self.successful_action_log)
self.logger.write_to_log('all-actions-' + str(self.trial), self.all_action_log)
# write current heightmap
depth_heightmap, color_heightmap, _, color_img, depth_img = get_and_save_images(self.click_count,
self.robot, self.logger, self.action, save_image=False)
self.logger.save_heightmaps(self.click_count + 1, color_heightmap,
depth_heightmap, 'end', poststring=self.trial)
if self.save_img:
self.logger.save_images(self.click_count + 1, color_grasp_img,
depth_grasp_img, 'end')
self.stop = True
elif key == ord('h'):
with self.mutex:
t = threading.Thread(target=lambda: self.robot.go_home())
t.start()
elif key == ord('-'):
with self.mutex:
t = threading.Thread(target=lambda: print('fully closed: ' + str(self.robot.close_gripper()) + \
' obj detected: ' + str(self.robot.gripper.object_detected())))
t.start()
elif key == ord('='):
with self.mutex:
t = threading.Thread(target=lambda: self.robot.open_gripper())
t.start()
elif key == ord('m'):
self.go_home = True
self.print_config()
elif key == ord('j'):
self.go_home = False
self.print_config()
elif key == ord('z'):
self.human_control = True
elif key == ord('a'):
self.human_control = False
elif key == ord('k'):
from calibrate_ros import Calibrate
robot.camera.subscribe_aruco_tf()
robot.go_home()
calib = Calibrate(robot=self.robot)
# calib.test()
calib.calibrate()
# def calibration():
# from calibrate_ros import Calibrate
# robot.camera.subscribe_aruco_tf()
# robot.go_home()
# calib = Calibrate(robot=self.robot)
# # calib.test()
# calib.calibrate()
# with self.mutex:
# t = threading.Thread(target=calibration)
# t.start()
def run(self):
""" Blocking call that repeatedly calls run_one()
"""
while not hcr.stop:
hcr.run_one()
def __del__(self):
cv2.destroyAllWindows()
def reset_sim(self):
while True:
self.robot.reposition_objects()
if self.task_type == 'vertical_square':
_, progress = self.robot.vertical_square_partial_success(np.ones(4), check_z_height=False, stack_dist_thresh=0.04)
elif self.task_type == 'row':
_, progress = self.robot.check_row(np.ones(4), check_z_height=False)
elif self.task_type == 'stack':
_, progress = self.robot.check_stack(np.ones(4))
else:
progress = 1
if progress == 1:
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--task_type', default='stack', type=str)
parser.add_argument('-s', '--save_img', action='store_true', default=False)
parser.add_argument('--save', action='store_true', default=False)
args = parser.parse_args()
# User options (change me)
# --------------- Setup options ---------------
tcp_host_ip = '192.168.1.155' # IP and port to robot arm as TCP client (UR5)
tcp_port = 30002
rtc_host_ip = '192.168.1.155' # IP and port to robot arm as real-time client (UR5)
rtc_port = 30003
# action = 'touch'
action = 'grasp'
if action == 'touch':
# workspace_limits = np.asarray([[0.5, 0.75], [-0.3, 0.1], [0.17, 0.3]]) # Real Good Robot
workspace_limits = None
elif action == 'grasp':
workspace_limits = None
else:
raise NotImplementedError
is_sim = True
if is_sim:
tcp_port = 19997
workspace_limits = np.asarray([[-0.724, -0.276], [-0.224, 0.224], [-0.0001, 0.4]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
heightmap_resolution = 0.002 # Meters per pixel of heightmap
calibrate = False
# Move robot to home pose
# TODO(adit98) add cmd line args to select goal, task, etc.
robot = Robot(is_sim, os.path.abspath('objects/blocks'), 4, workspace_limits,
tcp_host_ip, tcp_port, rtc_host_ip, rtc_port, False, None, None,
place=True, calibrate=calibrate, unstack=False, task_type=args.task_type)
if args.save:
# initialize logger
logger = Logger(continue_logging=False, logging_directory='demos')
logger.save_camera_info(robot.cam_intrinsics, robot.cam_pose, robot.cam_depth_scale) # Save camera intrinsics and pose
logger.save_heightmap_info(workspace_limits, heightmap_resolution) # Save heightmap parameters
else:
logger = None
hcr = HumanControlOfRobot(robot, action=action, logger=logger, task_type=args.task_type, save_img=args.save_img)
hcr.run()