-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathcalibrate_ros.py
executable file
·296 lines (228 loc) · 12.6 KB
/
calibrate_ros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
Using aruco_detect ROS package to calibrate eye-on-base camera calibration.
@author: Hongtao Wu, Andrew Hundt
Dec 05, 2019
"""
import rospy
import roslib
import numpy as np
import cv2
from robot import Robot
from ros_aruco import ROSArUcoCalibrate
import time
import os
import utils
def ros_transform_to_numpy_transform(transform):
"""ROS message transform to numpy matrix
Args:
-transform (ROS message): transformation, orientation is in quaternion
Returns:
- marker_transformation (4x4 numpy float array): rigid body transformation
"""
# Marker quaternion
marker_quaternion = np.array([transform.transform.rotation.w, transform.transform.rotation.x, transform.transform.rotation.y, transform.transform.rotation.z])
# Marker rotation matrix
marker_orientation_rotm = utils.quat2rotm(marker_quaternion)
# Marker transformation
marker_position = np.array([transform.transform.translation.x, transform.transform.translation.y, transform.transform.translation.z])
# Marker rigid body transformation
marker_transformation = np.zeros((4, 4))
marker_transformation[:3, :3] = marker_orientation_rotm
marker_transformation[:3, 3] = marker_position
marker_transformation[3, 3] = 1
return marker_transformation
class Calibrate:
def __init__(
self, robot=None, tcp_host_ip='192.168.1.155', tcp_port=30002, rtc_host_ip='192.168.1.155', rtc_port = 30003,
save_dir=None, workspace_limits=None, calib_point_num=30):
if workspace_limits is None:
# self.workspace_limits = np.asarray([[0.5, 0.75], [-0.3, 0.1], [0.17, 0.3]]) # Real Good Robot
# Dimensions of workspace should be 448 mm x 448 mm. That's 224x224 pixels with each pixel being 2mm x2mm.
self.workspace_limits = np.asarray([[0.5, 0.724], [-0.35, 0.05], [0.3, 0.6]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
self.calib_point_num = calib_point_num
self.robot = robot
if self.robot is None:
self.tcp_host_ip = tcp_host_ip
self.tcp_port = tcp_port
self.rtc_host_ip = rtc_host_ip
self.rtc_port = rtc_port
if save_dir is None:
folder = utils.timeStamped('calibration')
self.save_dir = os.path.join(os.path.expanduser('~/src/real_good_robot/'), folder)
print('Saving calibration to : ' + self.save_dir)
utils.mkdir_p(folder)
else:
self.save_dir = os.path.expanduser(save_dir)
self.robot_poses = []
self.marker_poses = []
def get_rgb_depth_image_and_transform(self):
color_img, depth_img = self.robot.get_camera_data(go_home=False)
aruco_tf, aruco_img = self.robot.camera.get_aruco_tf()
return color_img, depth_img, aruco_tf, aruco_img
def test(self):
self.activate_robot()
tool_position=[0.5, -0.3, 0.17]
tool_orientation = [0, np.pi/2, 0.0] # Real Good Robot
self.robot.move_to(tool_position, tool_orientation)
while True:
color_img, depth_img, aruco_tf, aruco_img = self.get_rgb_depth_image_and_transform()
cv2.imshow("color.png", color_img)
if aruco_img is not None:
cv2.imshow("aruco.png", aruco_img)
cv2.waitKey(1)
if aruco_tf is not None:
print(aruco_tf.transforms)
else:
print('no aruco transforms available, ensure you have run the tag program: taskset 0x000000FF roslaunch aruco_detect aruco_detect.launch')
def activate_robot(self):
if self.robot is None:
print('Activating the robot, prepare for it to move!')
self.robot = Robot(False, None, None, self.workspace_limits,
self.tcp_host_ip, self.tcp_port, self.rtc_host_ip, self.rtc_port,
False, None, None, calibrate=True)
print('Robot active, open the gripper')
self.robot.open_gripper()
print('Gripper opened!')
self.robot.joint_acc = 0.4
self.robot.joint_vel = 0.4
self.robot.tool_acc = 0.4
self.robot.tool_vel = 0.4
print('MOVING THE ROBOT to home position...')
self.robot.go_home()
def collect_data(self, workspace_limits=None, rate_hz=0.25):
"""
# Arguments
workspace_limits (numpy array)
rate_hz: The rate at which each data point is collected. You may want this to be smaller if time is needed to settle in place.
"""
# Test the destination directory.
if ( False == os.path.isdir( self.save_dir ) ):
print("The destination directory (%s) does not exist. Creating the directory." % self.save_dir)
os.mkdir( self.save_dir )
if workspace_limits is None:
workspace_limits = self.workspace_limits
if self.robot is None:
self.activate_robot()
rate = rospy.Rate(rate_hz) # hz
rate.sleep()
# An array of base orientation for the robot to calibrate
tool_orientations = [[0, np.pi/2, 0.0], [0, 3.0*np.pi/4.0, 0.0], [0, 5.0*np.pi/8.0, 0.0], [0, 5.0*np.pi/8.0, np.pi/8], [np.pi/8.0, 5.0*np.pi/8.0, 0.0]] # Real Good Robot
# Slow down robot
# self.robot.joint_acc = 1.7
# self.robot.joint_vel = 1.2
self.robot.joint_acc = 0.4
self.robot.joint_vel = 0.4
self.robot.tool_acc = 0.4
self.robot.tool_vel = 0.4
# Close gripper to grasp the block for calibration
self.robot.close_gripper()
robot_poses = []
marker_poses = []
print("Starting Calibration and saving data in: " + str(self.save_dir))
for calib_pt_idx in range(int(self.calib_point_num / len(tool_orientations))):
for tool_orientation_idx in range(len(tool_orientations)):
# The robot goes into random position
tool_position_x = self.workspace_limits[0, 0] + np.random.random() * (self.workspace_limits[0, 1] - self.workspace_limits[0, 0])
tool_position_y = self.workspace_limits[1, 0] + np.random.random() * (self.workspace_limits[1, 1] - self.workspace_limits[1, 0])
tool_position_z = self.workspace_limits[2, 0] + np.random.random() * (self.workspace_limits[2, 1] - self.workspace_limits[2, 0])
tool_position = np.array([tool_position_x, tool_position_y, tool_position_z])
# The robot goes to random orientation
tool_orientation = np.array(tool_orientations[tool_orientation_idx]) + 0.3 * np.random.random()
self.robot.move_to(tool_position, tool_orientation)
rate.sleep()
time.sleep(1)
color_img, depth_img, aruco_tf, aruco_img = self.get_rgb_depth_image_and_transform()
cv2.imshow("aruco.png", aruco_img)
cv2.waitKey(1)
img_prefix = str(calib_pt_idx) + '_' + str(tool_orientation_idx)
aruco_img_file = os.path.join(self.save_dir, 'arucoimg_' + img_prefix + '.png')
cv2.imwrite(aruco_img_file, aruco_img)
# rgb_img_file = os.path.join(self.save_dir, 'rgb_img_' + img_prefix + '.png')
# cv2.imwrite(rgb_img_file, color_img)
# depth_img_file = os.path.join(self.save_dir, 'depth_img_' + img_prefix + '.png')
# cv2.imwrite(depth_img_file, depth_img)
if len(aruco_tf.transforms) > 0:
cv2.imshow("aruco.png", aruco_img)
cv2.waitKey(1)
img_prefix = str(calib_pt_idx) + '_' + str(tool_orientation_idx)
aruco_img_file = os.path.join(self.save_dir, 'arucoimg_' + img_prefix + '.png')
cv2.imwrite(aruco_img_file, aruco_img)
transform = aruco_tf.transforms[0]
tool_transformation = utils.axis_angle_and_translation_to_rigid_transformation(tool_position, tool_orientation)
robot_poses += [tool_transformation]
marker_transformation = ros_transform_to_numpy_transform(transform)
marker_poses += [marker_transformation]
self.save_transforms_to_file(calib_pt_idx, tool_orientation_idx, aruco_tf, tool_transformation, marker_transformation)
return robot_poses, marker_poses
def save_transforms_to_file(self, calib_pt_idx, tool_orientation_idx, aruco_tf, tool_transformation, marker_transformation):
robot_pose_file = os.path.join(self.save_dir, "{:04d}_{:04d}_robotpose.txt".format(calib_pt_idx, tool_orientation_idx))
marker_pose_file = os.path.join(self.save_dir, "{:04d}_{:04d}_markerpose.txt".format(calib_pt_idx, tool_orientation_idx))
if len(aruco_tf.transforms) > 0:
# Tool pose in robot base frame
with open(robot_pose_file, 'w') as file1:
for l in np.reshape(tool_transformation, (16, )).tolist():
file1.writelines(str(l) + ' ')
# Marker pose in camera frame
with open(marker_pose_file, 'w') as file2:
for l in np.reshape(marker_transformation, (16, )).tolist():
file2.writelines(str(l) + ' ')
def calibrate(self, robot_poses=None, marker_poses=None, load_dir=None):
"""Perform calibration
robot_poses: a list of 4x4 transforms from the robot base to the tool tip
marker_poses: a list of 4x4 transforms from the camera to the AR tag marger
"""
if load_dir is not None:
# Load robot pose and marker pose
robot_poses, marker_poses = self.load_transforms(load_dir)
elif robot_poses is None and marker_poses is None:
# collect the pose data
robot_poses, marker_poses = self.collect_data()
# AX=XB calibration: camera pose in robot base frame
cam2base = utils.axxb(robot_poses, marker_poses)
print("Robot Base to Camera: \n", cam2base)
print('Saving results to: real/robot_base_to_camera_pose.txt')
np.savetxt('real/robot_base_to_camera_pose.txt', cam2base, delimiter=' ')
# AX=XB calibration: marker pose in tool frame
tool2AR = utils.axxb(robot_poses, marker_poses, baseToCamera=False)
print("Tool Tip to AR Tag: \n", tool2AR)
print('Saving results to: real/tool_tip_to_ar_tag_transform.txt')
np.savetxt('real/tool_tip_to_ar_tag_transform.txt', tool2AR, delimiter=' ')
return cam2base
def load_transforms(self, load_dir):
""" Load robot pose and marker pose from a save directory
# Arguments
load_dir: the directory where calibration data was previously acquired from the robot.
# Returns
Two lists of 4x4 transformation matrices.
robot_poses, marker_poses
"""
robot_poses = []
marker_poses = []
for f in os.listdir(load_dir):
if 'robotpose.txt' in f:
robot_pose_file = f
# TODO(hongtao) this next line probably breaks when the number of digits in samples changes (9, 99, 999)
marker_pose_file = f[:-13] + 'markerpose.txt'
# tool pose in robot base frame
with open(os.path.join(load_dir, robot_pose_file), 'r') as file_robot:
robotpose_str = file_robot.readline().split(' ')
robotpose = [float (x) for x in robotpose_str if x is not '']
assert len(robotpose) == 16
robotpose = np.reshape(np.array(robotpose), (4, 4))
robot_poses.append(robotpose)
# marker pose in camera frame
with open(os.path.join(load_dir, marker_pose_file), 'r') as file_marker:
markerpose_str = file_marker.readline().split(' ')
markerpose = [float(x) for x in markerpose_str if x is not '']
assert len(markerpose) == 16
markerpose = np.reshape(np.array(markerpose), (4, 4))
marker_poses.append(markerpose)
return robot_poses, marker_poses
if __name__ == "__main__":
# calib = Calibrate(save_dir='/home/costar/src/real_good_robot/calibration_2020_02_07')
# calib.test()
# calib.collect_data()
# calib.calibrate(load_dir='/home/costar/src/real_good_robot/calibration_2020_02_07')
calib = Calibrate(save_dir='/home/costar/src/real_good_robot/2020-02-12_calibration')
calib.collect_data()
calib.calibrate(load_dir='/home/costar/src/real_good_robot/2020-02-12_calibration')