-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathcalibrate.py
executable file
·212 lines (174 loc) · 9.31 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
import time
import cv2
from real.camera import Camera
from robot import Robot
from scipy import optimize
from mpl_toolkits.mplot3d import Axes3D
from tqdm import tqdm
# User options (change me)
# --------------- Setup options ---------------
tcp_host_ip = '192.168.1.155' # IP and port to robot arm as TCP client (UR5)
tcp_port = 30002
rtc_host_ip = '192.168.1.155' # IP and port to robot arm as real-time client (UR5)
rtc_port = 30003
# workspace_limits = np.asarray([[0.3, 0.748], [0.05, 0.4], [-0.2, -0.1]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
# x_offset = 0.0
# y_offset = -0.4
# workspace_limits = np.asarray([[0.3 + x_offset, 0.748 + x_offset], [0.05 + y_offset, 0.3 + y_offset], [0.15, 0.4]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
workspace_limits = np.asarray([[0.5, 0.75], [-0.3, 0.1], [0.17, 0.3]]) # Real Good Robot
calib_grid_step = 0.05
# Checkerboard tracking point offset from the tool in the robot coordinate
checkerboard_offset_from_tool = [-0.01, 0.0, 0.108]
tool_orientation = [0, np.pi/2, 0.0] # Real Good Robot
# tool_orientation = [-np.pi/2,0,0] # [0,-2.22,2.22] # [2.22,2.22,0]
# X is the axis from the robot to the clamp with the camera
# Y is the axis from the window to the computer
# Z is the vertical axis
# This orientation is the gripper pointing towards the camera, with the tag up.
# tool_orientation = [0, np.pi/2, 0]
# This orientation is the tag pointing towards the camera (45 degree angle)
# tool_orientation = [0, np.pi/2 + np.pi/4, 0]
# Construct 3D calibration grid across workspace
num_calib_grid_pts, calib_grid_pts = utils.calib_grid_cartesian(workspace_limits, calib_grid_step)
measured_pts = []
observed_pts = []
observed_pix = []
# Move robot to home pose
print('Connecting to robot...')
print('WARNING: Have your STOP button ready! The robot may move suddenly!')
print('WARNING: Be sure to move the bin from in front of the robot!')
robot = Robot(False, None, None, workspace_limits,
tcp_host_ip, tcp_port, rtc_host_ip, rtc_port,
False, None, None)
print('Robot active, open the gripper')
robot.open_gripper()
print('Gripper opened!')
# Slow down robot
robot.joint_acc = 1.7
robot.joint_vel = 1.2
# Make robot gripper point upwards
# robot.move_joints([-np.pi, -np.pi/2, np.pi/2, 0, np.pi/2, np.pi])
# The tag is pointing upwards at home
print('MOVING THE ROBOT to home position...')
robot.go_home()
# Move robot to each calibration point in workspace
print('Collecting data...')
for calib_pt_idx in tqdm(range(num_calib_grid_pts)):
tool_position = calib_grid_pts[calib_pt_idx,:]
print(' pos: ' + str(tool_position) + ' rot: ' + str(tool_orientation))
robot.move_to(tool_position, tool_orientation)
time.sleep(1)
# Find checkerboard center
checkerboard_size = (3,3)
refine_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
camera_color_img, camera_depth_img = robot.get_camera_data()
bgr_color_data = cv2.cvtColor(camera_color_img, cv2.COLOR_RGB2BGR)
gray_data = cv2.cvtColor(bgr_color_data, cv2.COLOR_RGB2GRAY)
checkerboard_found, corners = cv2.findChessboardCorners(gray_data, checkerboard_size, None, cv2.CALIB_CB_ADAPTIVE_THRESH)
if checkerboard_found:
print("Checkerboard found!")
corners_refined = cv2.cornerSubPix(gray_data, corners, (3,3), (-1,-1), refine_criteria)
# Get observed checkerboard center 3D point in camera space
# The point VPG is tracking is the middle one of a (3x3) checkerboard.
checkerboard_pix = np.round(corners_refined[4,0,:]).astype(int)
checkerboard_z = camera_depth_img[checkerboard_pix[1]][checkerboard_pix[0]]
checkerboard_x = np.multiply(checkerboard_pix[0]-robot.cam_intrinsics[0][2],checkerboard_z/robot.cam_intrinsics[0][0])
checkerboard_y = np.multiply(checkerboard_pix[1]-robot.cam_intrinsics[1][2],checkerboard_z/robot.cam_intrinsics[1][1])
if checkerboard_z == 0:
continue
# Save calibration point and observed checkerboard center
observed_pts.append([checkerboard_x,checkerboard_y,checkerboard_z])
# tool_position[2] += checkerboard_offset_from_tool
tool_position = tool_position + checkerboard_offset_from_tool
measured_pts.append(tool_position)
observed_pix.append(checkerboard_pix)
# Draw and display the corners
# vis = cv2.drawChessboardCorners(robot.camera.color_data, checkerboard_size, corners_refined, checkerboard_found)
vis = cv2.drawChessboardCorners(bgr_color_data, (1,1), corners_refined[4,:,:], checkerboard_found)
cv2.imwrite('%06d.png' % len(measured_pts), vis)
cv2.imshow('Calibration',vis)
cv2.waitKey(10)
# Move robot back to home pose
robot.go_home()
measured_pts = np.asarray(measured_pts) # The measured_pts is in m unit.
observed_pts = np.asarray(observed_pts) / 1000 # The observed_pts is in mm unit. Changing the unit to m.
observed_pix = np.asarray(observed_pix)
world2camera = np.eye(4)
# Save the collected points
np.savetxt('measured_pts.txt', np.asarray(measured_pts), delimiter=' ')
np.savetxt('observed_pts.txt', np.asarray(observed_pts), delimiter=' ')
np.savetxt('observed_pix.txt', np.asarray(observed_pix), delimiter=' ')
# Estimate rigid transform with SVD (from Nghia Ho)
def get_rigid_transform(A, B):
assert len(A) == len(B)
N = A.shape[0]; # Total points
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - np.tile(centroid_A, (N, 1)) # Centre the points
BB = B - np.tile(centroid_B, (N, 1))
H = np.dot(np.transpose(AA), BB) # Dot is matrix multiplication for array
U, S, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
if np.linalg.det(R) < 0: # Special reflection case
Vt[2,:] *= -1
R = np.dot(Vt.T, U.T)
t = np.dot(-R, centroid_A.T) + centroid_B.T
return R, t
def get_rigid_transform_error(z_scale):
global measured_pts, observed_pts, observed_pix, world2camera, camera
# Apply z offset and compute new observed points using camera intrinsics
observed_z = observed_pts[:,2:] * z_scale
observed_x = np.multiply(observed_pix[:,[0]]-robot.cam_intrinsics[0][2],observed_z/robot.cam_intrinsics[0][0])
observed_y = np.multiply(observed_pix[:,[1]]-robot.cam_intrinsics[1][2],observed_z/robot.cam_intrinsics[1][1])
new_observed_pts = np.concatenate((observed_x, observed_y, observed_z), axis=1)
# Estimate rigid transform between measured points and new observed points
R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
t.shape = (3,1)
world2camera = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# Compute rigid transform error
registered_pts = np.dot(R,np.transpose(measured_pts)) + np.tile(t,(1,measured_pts.shape[0]))
error = np.transpose(registered_pts) - new_observed_pts
error = np.sum(np.multiply(error,error))
rmse = np.sqrt(error/measured_pts.shape[0])
return rmse
# Optimize z scale w.r.t. rigid transform error
print('Calibrating...')
z_scale_init = 1
optim_result = optimize.minimize(get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead')
camera_depth_offset = optim_result.x
# Save camera optimized offset and camera pose
print('Saving...')
np.savetxt('real/camera_depth_scale.txt', camera_depth_offset, delimiter=' ')
get_rigid_transform_error(camera_depth_offset)
camera_pose = np.linalg.inv(world2camera)
np.savetxt('real/robot_base_to_camera_pose.txt', camera_pose, delimiter=' ')
print('Done.')
# DEBUG CODE -----------------------------------------------------------------------------------
# np.savetxt('measured_pts.txt', np.asarray(measured_pts), delimiter=' ')
# np.savetxt('observed_pts.txt', np.asarray(observed_pts), delimiter=' ')
# np.savetxt('observed_pix.txt', np.asarray(observed_pix), delimiter=' ')
# measured_pts = np.loadtxt('measured_pts.txt', delimiter=' ')
# observed_pts = np.loadtxt('observed_pts.txt', delimiter=' ')
# observed_pix = np.loadtxt('observed_pix.txt', delimiter=' ')
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# ax.scatter(measured_pts[:,0],measured_pts[:,1],measured_pts[:,2], c='blue')
# print(camera_depth_offset)
# R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(observed_pts)) + np.tile(camera2robot[0:3,3:],(1,observed_pts.shape[0])))
# ax.scatter(t_observed_pts[:,0],t_observed_pts[:,1],t_observed_pts[:,2], c='red')
# new_observed_pts = observed_pts.copy()
# new_observed_pts[:,2] = new_observed_pts[:,2] * camera_depth_offset[0]
# R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_new_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(new_observed_pts)) + np.tile(camera2robot[0:3,3:],(1,new_observed_pts.shape[0])))
# ax.scatter(t_new_observed_pts[:,0],t_new_observed_pts[:,1],t_new_observed_pts[:,2], c='green')
# plt.show()