-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplanner.h
149 lines (114 loc) · 6.73 KB
/
planner.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef planner_h
#define planner_h
// The number of linear motions that can be in the plan at any give time
#ifndef BLOCK_BUFFER_SIZE
#ifdef USE_LINE_NUMBERS
#define BLOCK_BUFFER_SIZE 15
#else
#define BLOCK_BUFFER_SIZE 16
#endif
#endif
// Returned status message from planner.
#define PLAN_OK true
#define PLAN_EMPTY_BLOCK false
// Define planner data condition flags. Used to denote running conditions of a block.
#define PL_COND_FLAG_RAPID_MOTION bit(0)
#define PL_COND_FLAG_SYSTEM_MOTION bit(1) // Single motion. Circumvents planner state. Used by home/park.
#define PL_COND_FLAG_NO_FEED_OVERRIDE bit(2) // Motion does not honor feed override.
#define PL_COND_FLAG_INVERSE_TIME bit(3) // Interprets feed rate value as inverse time when set.
#define PL_COND_FLAG_SPINDLE_CW bit(4)
#define PL_COND_FLAG_SPINDLE_CCW bit(5)
#define PL_COND_FLAG_COOLANT_FLOOD bit(6)
#define PL_COND_FLAG_COOLANT_MIST bit(7)
#define PL_COND_MOTION_MASK (PL_COND_FLAG_RAPID_MOTION|PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE)
#define PL_COND_ACCESSORY_MASK (PL_COND_FLAG_SPINDLE_CW|PL_COND_FLAG_SPINDLE_CCW|PL_COND_FLAG_COOLANT_FLOOD|PL_COND_FLAG_COOLANT_MIST)
// This struct stores a linear movement of a g-code block motion with its critical "nominal" values
// are as specified in the source g-code.
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
// NOTE: Used by stepper algorithm to execute the block correctly. Do not alter these values.
uint32_t steps[N_AXIS]; // Step count along each axis
uint32_t step_event_count; // The maximum step axis count and number of steps required to complete this block.
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Block condition data to ensure correct execution depending on states and overrides.
uint8_t condition; // Block bitflag variable defining block run conditions. Copied from pl_line_data.
#ifdef USE_LINE_NUMBERS
int32_t line_number; // Block line number for real-time reporting. Copied from pl_line_data.
#endif
// Fields used by the motion planner to manage acceleration. Some of these values may be updated
// by the stepper module during execution of special motion cases for replanning purposes.
float entry_speed_sqr; // The current planned entry speed at block junction in (mm/min)^2
float max_entry_speed_sqr; // Maximum allowable entry speed based on the minimum of junction limit and
// neighboring nominal speeds with overrides in (mm/min)^2
float acceleration; // Axis-limit adjusted line acceleration in (mm/min^2). Does not change.
float millimeters; // The remaining distance for this block to be executed in (mm).
// NOTE: This value may be altered by stepper algorithm during execution.
// Stored rate limiting data used by planner when changes occur.
float max_junction_speed_sqr; // Junction entry speed limit based on direction vectors in (mm/min)^2
float rapid_rate; // Axis-limit adjusted maximum rate for this block direction in (mm/min)
float programmed_rate; // Programmed rate of this block (mm/min).
#ifdef VARIABLE_SPINDLE
// Stored spindle speed data used by spindle overrides and resuming methods.
float spindle_speed; // Block spindle speed. Copied from pl_line_data.
#endif
} plan_block_t;
// Planner data prototype. Must be used when passing new motions to the planner.
typedef struct {
float feed_rate; // Desired feed rate for line motion. Value is ignored, if rapid motion.
float spindle_speed; // Desired spindle speed through line motion.
uint8_t condition; // Bitflag variable to indicate planner conditions. See defines above.
#ifdef USE_LINE_NUMBERS
int32_t line_number; // Desired line number to report when executing.
#endif
} plan_line_data_t;
// Initialize and reset the motion plan subsystem
void plan_reset(); // Reset all
void plan_reset_buffer(); // Reset buffer only.
// Add a new linear movement to the buffer. target[N_AXIS] is the signed, absolute target position
// in millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
// rate is taken to mean "frequency" and would complete the operation in 1/feed_rate minutes.
uint8_t plan_buffer_line(float *target, plan_line_data_t *pl_data);
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
void plan_discard_current_block();
// Gets the planner block for the special system motion cases. (Parking/Homing)
plan_block_t *plan_get_system_motion_block();
// Gets the current block. Returns NULL if buffer empty
plan_block_t *plan_get_current_block();
// Called periodically by step segment buffer. Mostly used internally by planner.
uint8_t plan_next_block_index(uint8_t block_index);
// Called by step segment buffer when computing executing block velocity profile.
float plan_get_exec_block_exit_speed_sqr();
// Called by main program during planner calculations and step segment buffer during initialization.
float plan_compute_profile_nominal_speed(plan_block_t *block);
// Re-calculates buffered motions profile parameters upon a motion-based override change.
void plan_update_velocity_profile_parameters();
// Reset the planner position vector (in steps)
void plan_sync_position();
// Reinitialize plan with a partially completed block
void plan_cycle_reinitialize();
// Returns the number of available blocks are in the planner buffer.
uint8_t plan_get_block_buffer_available();
// Returns the number of active blocks are in the planner buffer.
// NOTE: Deprecated. Not used unless classic status reports are enabled in config.h
uint8_t plan_get_block_buffer_count();
// Returns the status of the block ring buffer. True, if buffer is full.
uint8_t plan_check_full_buffer();
void plan_get_planner_mpos(float *target);
#endif