[Homepage] [Document] [Examples]
Hora Search Everywhere!
Hora는 근접 이웃 검색 알고리즘(wiki) 라이브러리입니다. 우리는 C++
에 필적하는 신뢰성, 높은 수준의 추상화 및 고속을 위해 Rust🦀
에서 모든 코드를 구현합니다.
Hora, 「ほら」
는 일본어로 [hōlə]
처럼 들리며 와우
, 알겠습니다!
또는 저걸 봐!
를 의미합니다. 이름은 유명한 일본 노래 「小さな恋のうた」
에서 영감을 받았습니다.
👩 Face-Match [online demo], have a try!
🍷 Dream wine comments search [online demo], have a try!
-
Performant ⚡️
- SIMD-Accelerated (packed_simd)
- Stable algorithm implementation
- Multiple threads design
-
Supports Multiple Languages ☄️
Python
Javascript
Java
Go
(WIP)Ruby
(WIP)Swift
(WIP)R
(WIP)Julia
(WIP)- Can also be used as a service
-
Supports Multiple Indexes 🚀
-
Portable 💼
- Supports
WebAssembly
- Supports
Windows
,Linux
andOS X
- Supports
IOS
andAndroid
(WIP) - Supports
no_std
(WIP, partial) - No heavy dependencies, such as
BLAS
- Supports
-
Reliability 🔒
Rust
compiler secures all code- Memory managed by
Rust
for all language libraries such asPython's
- Broad testing coverage
-
Supports Multiple Distances 🧮
-
Productive ⭐
- Well documented
- Elegant, simple and easy to learn API
Rust
in Cargo.toml
[dependencies]
hora = "0.1.1"
Python
$ pip install horapy
Javascript (WebAssembly)
$ npm i horajs
Building from source
$ git clone https://github.com/hora-search/hora
$ cargo build
by aws t2.medium (CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz)
more information
Rust
example [more info]
use hora::core::ann_index::ANNIndex;
use rand::{thread_rng, Rng};
use rand_distr::{Distribution, Normal};
pub fn demo() {
let n = 1000;
let dimension = 64;
// make sample points
let mut samples = Vec::with_capacity(n);
let normal = Normal::new(0.0, 10.0).unwrap();
for _i in 0..n {
let mut sample = Vec::with_capacity(dimension);
for _j in 0..dimension {
sample.push(normal.sample(&mut rand::thread_rng()));
}
samples.push(sample);
}
// init index
let mut index = hora::index::hnsw_idx::HNSWIndex::<f32, usize>::new(
dimension,
&hora::index::hnsw_params::HNSWParams::<f32>::default(),
);
for (i, sample) in samples.iter().enumerate().take(n) {
// add point
index.add(sample, i).unwrap();
}
index.build(hora::core::metrics::Metric::Euclidean).unwrap();
let mut rng = thread_rng();
let target: usize = rng.gen_range(0..n);
// 523 has neighbors: [523, 762, 364, 268, 561, 231, 380, 817, 331, 246]
println!(
"{:?} has neighbors: {:?}",
target,
index.search(&samples[target], 10) // search for k nearest neighbors
);
}
thank @vaaaaanquish for this complete pure rust image search example, For more information about this example, please can click Pure Rustな近似最近傍探索ライブラリhoraを用いた画像検索を実装する
Python
example [more info]
import numpy as np
from horapy import HNSWIndex
dimension = 50
n = 1000
# init index instance
index = HNSWIndex(dimension, "usize")
samples = np.float32(np.random.rand(n, dimension))
for i in range(0, len(samples)):
# add node
index.add(np.float32(samples[i]), i)
index.build("euclidean") # build index
target = np.random.randint(0, n)
# 410 in Hora ANNIndex <HNSWIndexUsize> (dimension: 50, dtype: usize, max_item: 1000000, n_neigh: 32, n_neigh0: 64, ef_build: 20, ef_search: 500, has_deletion: False)
# has neighbors: [410, 736, 65, 36, 631, 83, 111, 254, 990, 161]
print("{} in {} \nhas neighbors: {}".format(
target, index, index.search(samples[target], 10))) # search
JavaScript
example [more info]
import * as horajs from "horajs";
const demo = () => {
const dimension = 50;
var bf_idx = horajs.BruteForceIndexUsize.new(dimension);
// var hnsw_idx = horajs.HNSWIndexUsize.new(dimension, 1000000, 32, 64, 20, 500, 16, false);
for (var i = 0; i < 1000; i++) {
var feature = [];
for (var j = 0; j < dimension; j++) {
feature.push(Math.random());
}
bf_idx.add(feature, i); // add point
}
bf_idx.build("euclidean"); // build index
var feature = [];
for (var j = 0; j < dimension; j++) {
feature.push(Math.random());
}
console.log("bf result", bf_idx.search(feature, 10)); //bf result Uint32Array(10) [704, 113, 358, 835, 408, 379, 117, 414, 808, 826]
}
(async () => {
await horajs.default();
await horajs.init_env();
demo();
})();
Java
example [more info]
public void demo() {
final int dimension = 2;
final float variance = 2.0f;
Random fRandom = new Random();
BruteForceIndex bruteforce_idx = new BruteForceIndex(dimension); // init index instance
List<float[]> tmp = new ArrayList<>();
for (int i = 0; i < 5; i++) {
for (int p = 0; p < 10; p++) {
float[] features = new float[dimension];
for (int j = 0; j < dimension; j++) {
features[j] = getGaussian(fRandom, (float) (i * 10), variance);
}
bruteforce_idx.add("bf", features, i * 10 + p); // add point
tmp.add(features);
}
}
bruteforce_idx.build("bf", "euclidean"); // build index
int search_index = fRandom.nextInt(tmp.size());
// nearest neighbor search
int[] result = bruteforce_idx.search("bf", 10, tmp.get(search_index));
// [main] INFO com.hora.app.ANNIndexTest - demo bruteforce_idx[7, 8, 0, 5, 3, 9, 1, 6, 4, 2]
log.info("demo bruteforce_idx" + Arrays.toString(result));
}
private static float getGaussian(Random fRandom, float aMean, float variance) {
float r = (float) fRandom.nextGaussian();
return aMean + r * variance;
}
- 전체 테스트 범위
- 더 빠른 KNN 그래프 구축을 달성하기 위해 EFANNA 알고리즘 구현
- Swift 지원 및
iOS
/macOS
배포 예시 - 지원
R
-
mmap
지원
-
Hora
의 구현은 이러한 라이브러리에서 크게 영감을 받았습니다.Faiss
는 GPU 장면에 더 중점을 두고Hora
는 Faiss보다 가볍습니다(중대한 종속성 없음).Hora
는 더 많은 언어를 지원할 예정이며 성능과 관련된 모든 것은 Rust🦀에서 구현됩니다.Annoy
는 ``LSH (Random Projection)` 알고리즘만 지원합니다.ScaNN
및Faiss
는 사용자 친화적이지 않습니다(예: 문서 부족).- Hora is ALL IN RUST 🦀.
-
- 'Milvus'와 'Vald'도 여러 언어를 지원하지만 라이브러리 대신 서비스 역할을 합니다.
- 'Milvus'는 'Faiss'와 같은 일부 라이브러리를 기반으로 하는 반면, 'Hora'는 모든 알고리즘이 자체적으로 구현된 라이브러리입니다.
We appreciate your help!
문서 및 테스트를 포함하여 모든 기여를 환영합니다.
GitHub에서 Pull Request
또는 Issue
를 생성할 수 있으며 최대한 빨리 검토하겠습니다.
제안 및 버그를 추적하기 위해 GitHub 문제를 사용합니다.
git clone https://github.com/hora-search/hora
cargo build
cargo test --lib
cd examples
cargo run
The entire repository is licensed under the Apache License.