-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
354 lines (279 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
# Distributed training
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
from torch.distributed import init_process_group, destroy_process_group
import warnings
from tqdm import tqdm
import os
from pathlib import Path
import argparse
# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import wandb
import torchmetrics
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_default_config, get_weights_file_path, get_latest_weights_file_path, ModelConfig
def greedy_decode(model: nn.Module, source: torch.Tensor, source_mask: torch.Tensor, tokenizer_src: Tokenizer, tokenizer_tgt: Tokenizer, max_len: int, device: torch.device):
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every step
encoder_output = model.module.encode(source, source_mask)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1) == max_len:
break
# build mask for target
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# calculate output
out = model.module.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# get next token
prob = model.module.project(out[:, -1])
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat(
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model: nn.Module, validation_ds: DataLoader, tokenizer_src: Tokenizer, tokenizer_tgt: Tokenizer, max_len: int, device: torch.device, print_msg: callable, global_step: int, num_examples: int = 2):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
# Evaluate the character error rate
# Compute the char error rate
metric = torchmetrics.CharErrorRate()
cer = metric(predicted, expected)
wandb.log({'validation/cer': cer, 'global_step': global_step})
# Compute the word error rate
metric = torchmetrics.WordErrorRate()
wer = metric(predicted, expected)
wandb.log({'validation/wer': wer, 'global_step': global_step})
# Compute the BLEU metric
metric = torchmetrics.BLEUScore()
bleu = metric(predicted, expected)
wandb.log({'validation/BLEU': bleu, 'global_step': global_step})
def get_all_sentences(ds: Dataset, lang: str):
for item in ds:
yield item['translation'][lang]
def get_or_build_tokenizer(config: ModelConfig, ds: Dataset, lang: str) -> Tokenizer:
tokenizer_path = Path(config.tokenizer_file.format(lang))
if not Path.exists(tokenizer_path):
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config: ModelConfig):
# It only has the train split, so we divide it overselves
ds_raw = load_dataset('opus_books', f"{config.lang_src}-{config.lang_tgt}", split='train')
# Build tokenizers
print(f"GPU {config.local_rank} - Loading tokenizers...")
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config.lang_src)
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config.lang_tgt)
# Keep 90% for training, 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config.lang_src, config.lang_tgt, config.seq_len)
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config.lang_src, config.lang_tgt, config.seq_len)
# Find the maximum length of each sentence in the source and target sentence
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config.lang_src]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config.lang_tgt]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f'GPU {config.local_rank} - Max length of source sentence: {max_len_src}')
print(f'GPU {config.local_rank} - Max length of target sentence: {max_len_tgt}')
train_dataloader = DataLoader(train_ds, batch_size=config.batch_size, shuffle=False, sampler=DistributedSampler(train_ds, shuffle=True))
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config: ModelConfig, vocab_src_len: int, vocab_tgt_len: int):
model = build_transformer(vocab_src_len, vocab_tgt_len, config.seq_len, config.seq_len, d_model=config.d_model)
return model
def train_model(config: ModelConfig):
# Define the device
assert torch.cuda.is_available(), "Training on CPU is not supported"
device = torch.device("cuda")
print(f"GPU {config.local_rank} - Using device: {device}")
# Make sure the weights folder exists
Path(config.model_folder).mkdir(parents=True, exist_ok=True)
# Load the dataset
print(f"GPU {config.local_rank} - Loading dataset...")
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, eps=1e-9)
# By default, load the latest checkpoint
initial_epoch = 0
global_step = 0
wandb_run_id = None
if config.preload != '':
if config.preload == 'latest':
# Get the filename of the latest checkpoint
model_filename = get_latest_weights_file_path(config)
else:
# In case we want to preload a specific checkpoint
model_filename = get_weights_file_path(config, int(config.preload))
if model_filename is not None:
print(f'GPU {config.local_rank} - Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
wandb_run_id = state['wandb_run_id']
del state
else:
# If we couldn't find a model to preload, just start from scratch
print(f'GPU {config.local_rank} - Could not find model to preload: {config.preload}. Starting from scratch')
# Only initialize W&B on the global rank 0 node
if config.local_rank == 0:
wandb.init(
# set the wandb project where this run will be logged
project="pytorch-transformer-distributed",
# allow resuming existing run with the same name (in case the rank 0 node crashed)
name=f"global_rank_{config.global_rank}",
id=wandb_run_id,
resume="allow",
group=config.wandb_group,
# track hyperparameters and run metadata
config=config
)
# Convert the model to DistributedDataParallel
# Here we can also specify the bucket_cap_mb parameter to control the size of the buckets
model = DistributedDataParallel(model, device_ids=[config.local_rank])
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
if config.global_rank == 0:
# define our custom x axis metric
wandb.define_metric("global_step")
# define which metrics will be plotted against it
wandb.define_metric("validation/*", step_metric="global_step")
wandb.define_metric("train/*", step_metric="global_step")
for epoch in range(initial_epoch, config.num_epochs):
torch.cuda.empty_cache()
model.train()
# Disable tqdm on all nodes except the rank 0 GPU on each server
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d} on rank {config.global_rank}", disable=config.local_rank != 0)
for batch in batch_iterator:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# # Run the tensors through the encoder, decoder and the projection layer
# encoder_output = model.module.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
# decoder_output = model.module.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
# proj_output = model.module.project(decoder_output) # (B, seq_len, vocab_size)
proj_output = model(encoder_input, encoder_mask, decoder_input, decoder_mask)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}", "global_step": global_step})
if config.local_rank == 0:
# Log the loss
wandb.log({'train/loss': loss.item(), 'global_step': global_step})
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
# Only run validation and checkpoint saving on the rank 0 node
if config.global_rank == 0:
# Run validation at the end of every epoch
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config.seq_len, device, lambda msg: batch_iterator.write(msg), global_step)
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, epoch)
torch.save({
'epoch': epoch,
'model_state_dict': model.module.state_dict(), # Need to access module because we are using DDP
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step,
'wandb_run_id': wandb.run.id # Save to resume logging data
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
# Disable tokenizers parallelism (this is to avoid deadlocks when creating the tokenizers on multiple GPUs)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
config = get_default_config()
# Read command line arguments and overwrite config accordingly
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=config.batch_size)
parser.add_argument('--num_epochs', type=int, default=config.num_epochs)
parser.add_argument('--lr', type=float, default=config.lr)
parser.add_argument('--seq_len', type=int, default=config.seq_len)
parser.add_argument('--d_model', type=int, default=config.d_model)
parser.add_argument('--lang_src', type=str, default=config.lang_src)
parser.add_argument('--lang_tgt', type=str, default=config.lang_tgt)
parser.add_argument('--model_folder', type=str, default=config.model_folder)
parser.add_argument('--model_basename', type=str, default=config.model_basename)
parser.add_argument('--preload', type=str, default=config.preload)
parser.add_argument('--tokenizer_file', type=str, default=config.tokenizer_file)
parser.add_argument('--wandb_group', type=str, default="exp1")
args = parser.parse_args()
# Update default configuration with command line arguments
config.__dict__.update(vars(args))
# Add local rank and global rank to the config
config.local_rank = int(os.environ['LOCAL_RANK'])
config.global_rank = int(os.environ['RANK'])
assert config.local_rank != -1, "LOCAL_RANK environment variable not set"
assert config.global_rank != -1, "RANK environment variable not set"
# Print configuration (only once per server)
if config.local_rank == 0:
print("Configuration:")
for key, value in config.__dict__.items():
print(f"{key:>20}: {value}")
# Setup distributed training
init_process_group(backend='nccl')
torch.cuda.set_device(config.local_rank)
# Train the model
train_model(config)
# Clean up distributed training
destroy_process_group()