-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathconfig.py
54 lines (48 loc) · 1.8 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from pathlib import Path
from dataclasses import dataclass
@dataclass
class ModelConfig:
batch_size: int # Batch size
num_epochs: int # Number of epochs to train
lr: float # Learning rate
seq_len: int # Sequence length
d_model: int # Size of the embedding vector
lang_src: str # Source language
lang_tgt: str # Target language
model_folder: str # Folder where to save the checkpoints
model_basename: str # Basename of the checkpoint files
preload: str # Preload weights from a previous checkpoint
tokenizer_file: str # Path where to save the tokenizer
local_rank: int = -1 # LOCAL_RANK assigned by torchrun
global_rank: int = -1 # RANK assigned by torchrun
def get_default_config() -> ModelConfig:
return ModelConfig(
batch_size=4,
num_epochs=30,
lr=10**-4,
seq_len=350,
d_model=512,
lang_src="en",
lang_tgt="it",
model_folder="weights",
model_basename="tmodel_{0:02d}.pt",
preload="latest",
tokenizer_file="tokenizer_{0}.json",
)
def get_weights_file_path(config: ModelConfig, epoch: str) -> str:
model_folder = config.model_folder
model_basename = config.model_basename
model_filename = model_basename.format(epoch)
return str(Path('.') / model_folder / model_filename)
def get_latest_weights_file_path(config: ModelConfig) -> str:
model_folder = config.model_folder
model_basename = config.model_basename
# Check all files in the model folder
model_files = Path(model_folder).glob(f"*.pt")
# Sort by epoch number (ascending order)
model_files = sorted(model_files, key=lambda x: int(x.stem.split('_')[-1]))
if len(model_files) == 0:
return None
# Get the last one
model_filename = model_files[-1]
return str(model_filename)