Skip to content

Latest commit

 

History

History
58 lines (42 loc) · 2.59 KB

README.md

File metadata and controls

58 lines (42 loc) · 2.59 KB

pytorch-transformer-distributed

Distributed training of an attention model. Forked from: hkproj/pytorch-transformer

Instructions for Paperspace

Machines

Make sure to create everything in the same region. I used East Coast (NY2).

  1. Create 1x Private network. Assign both computers to the private network when creating the machines.
  2. Create 2x nodes of P4000x2 (multi-GPU) with ML-in-a-Box as operating system
  3. Create 1 Network drive (250 GB)

Setup

Login on each machine and perform the following operations:

  1. sudo apt-get update
  2. sudo apt-get install net-tools
  3. If you get an error about seahorse while installing net-tools, do the following:
    1. sudo rm /var/lib/dpkg/info/seahorse.list
    2. sudo apt-get install seahorse --reinstall
  4. Get each machine's private IP address using ifconfig
  5. Add IP and hostname mapping of all the slave nodes on /etc/hosts file of the master node
  6. Mount the network drive
    1. sudo apt-get install smbclient
    2. sudo apt-get install cifs-utils
    3. sudo mkdir /mnt/training-data
    4. Replace the following values on the command below:
      1. NETWORD_DRIVE_IP with the IP address of the network drive
      2. NETWORK_SHARE_NAME with the name of the network share
      3. DRIVE_USERNAME with the username of the network drive
    5. sudo mount -t cifs //NETWORD_DRIVE_IP/NETWORK_SHARE_NAME /mnt/training-data -o uid=1000,gid=1000,rw,user,username=NETWORK_DRIVE_USERNAME
      1. Type the drive's password when prompted
  7. git clone https://github.com/hkproj/pytorch-transformer-distributed
  8. cd pytorch-transformer-distributed
  9. pip install -r requirements.txt
  10. Login on Weights & Biases
    1. wandb login
    2. Copy the API key from the browser and paste it on the terminal
  11. Run the training command from below

Local training

Run the following command on any machine. Make sure to not run it on both, otherwise they will end up overwriting each other's checkpoints.

torchrun --nproc_per_node=2 --nnodes=1 --rdzv_id=456 --rdzv_backend=c10d --rdzv_endpoint=127.0.0.1:48123 train.py --batch_size 8 --model_folder "/mnt/training-data/weights"

Distributed training

Run the following command on each machine (replace IP_ADDR_MASTER_NODE with the IP address of the master node):

torchrun --nproc_per_node=2 --nnodes=2 --rdzv_id=456 --rdzv_backend=c10d --rdzv_endpoint=IP_ADDR_MASTER_NODE:48123 train.py --batch_size 8 --model_folder "/mnt/training-data/weights"

Monitoring

Login to Weights & Biases to monitor the training progress: https://app.wandb.ai/