forked from utanaka2000/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhubconf.py
67 lines (56 loc) · 1.97 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
import importlib
dependencies = [
'dataclasses',
'hydra',
'numpy',
'regex',
'requests',
'torch',
]
# Check for required dependencies and raise a RuntimeError if any are missing.
missing_deps = []
for dep in dependencies:
try:
importlib.import_module(dep)
except ImportError:
# Hack: the hydra package is provided under the "hydra-core" name in
# pypi. We don't want the user mistakenly calling `pip install hydra`
# since that will install an unrelated package.
if dep == 'hydra':
dep = 'hydra-core'
missing_deps.append(dep)
if len(missing_deps) > 0:
raise RuntimeError('Missing dependencies: {}'.format(', '.join(missing_deps)))
# torch.hub doesn't build Cython components, so if they are not found then try
# to build them here
try:
import fairseq.data.token_block_utils_fast # noqa
except ImportError:
try:
import cython # noqa
import os
from setuptools import sandbox
sandbox.run_setup(
os.path.join(os.path.dirname(__file__), 'setup.py'),
['build_ext', '--inplace'],
)
except ImportError:
print(
'Unable to build Cython components. Please make sure Cython is '
'installed if the torch.hub model you are loading depends on it.'
)
from fairseq.hub_utils import BPEHubInterface as bpe # noqa
from fairseq.hub_utils import TokenizerHubInterface as tokenizer # noqa
from fairseq.models import MODEL_REGISTRY # noqa
# automatically expose models defined in FairseqModel::hub_models
for _model_type, _cls in MODEL_REGISTRY.items():
for model_name in _cls.hub_models().keys():
globals()[model_name] = functools.partial(
_cls.from_pretrained,
model_name,
)