Skip to content

Latest commit

 

History

History
93 lines (64 loc) · 2.59 KB

README.md

File metadata and controls

93 lines (64 loc) · 2.59 KB

python-KNN

##Introducion

python-KNN is a simple implementation of K nearest neighbors algorithm in Python.

Algorithm used kd-tree as basic data structure.

Usage of python-KNN

Download the latest python-KNN source code, unzip it. Or you can just clone this repo to your own PC.

Import this module from python-KNN import * (make sure the path of python-KNN has already appended into the sys.path). Or you can just store it in current folder of you program, and then import it.

The script examples.py gives a simple code of how to use kdtree and knn.

###Usage of kdtree.py kdtree.py is a python implementation of the 'kd tree' algorithm.

>>> import kdtree
# the point list
>>> point = [(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)]

# create a kdtree using point as data
>>> root = kdtree.create(point,dimensions=2)

# visualize
>>> print("point list")
>>> print(point1)
point list
[(2, 3), (4, 7), (5, 4), (7, 2), (8, 1), (9, 6)]

>>> print("visualize the kd-tree: ")
>>> kdtree.visualize(root)
visualize the kd-tree: 

                       (7, 2)                  

             (5, 4)               (9, 6)        

        (2, 3)     (4, 7)     (8, 1)

# search for k nearest neighbors
>>> ans = root.search_knn(point=(7,3),k=2,dist=None)
>>> print (ans)
[(<KDNode - (7, 2)>, 1.0), (<KDNode - (8, 1)>, 5.0)]

>>> ans = root.search_knn(point=(7,3),k=3,dist=None)
>>> print (ans)
[(<KDNode - (7, 2)>, 1.0), (<KDNode - (8, 1)>, 5.0), (<KDNode - (9, 6)>, 13.0)]


###Usage of knn.py Based on kdtree algorithm, using python implemented a k-nearest neighbor algorithm.

>>> data = [((3,5),1),((2, 3), 1), ((5, 4), 1), ((9, 6), 0), ((4, 7), 1), ((8, 1), 0), ((7, 2), 1), ((8, 8), 0)]
>>> m = KNN(data,dimensions=2)
>>> print "Samples:",m.train_data
Samples: {(5, 4): 1, (8, 1): 0, (4, 7): 1, (8, 8): 0, (2, 3): 1, (9, 6): 0, (7, 2): 1, (3, 5): 1}

>>> print "\nLabel prb:",m.class_prb
Label prb: {0: 0.4, 1: 0.6}

>>> print "\n\nvisualize the kd-tree: "
>>> m.visualize_kdtree()
visualize the kd-tree:

                                           (7, 2)

                       (3, 5)                                   (9, 6)

             (5, 4)               (4, 7)               (8, 1)               (8, 8)

        (2, 3)

# Manhattan distance
>>> f = lambda a, b: sum( abs(a[axis]-b[axis]) for axis in range(len(a)))     

# Using Euclidean distance
>>>print "the label of point",(9,9),"is",m.classify(point=(9,9),k=3,dist=None)
the label of point (9, 9) is 0

# Using Manhattan distance
>>>print "the label of point",(2,8),"is",m.classify(point=(2,8),k=3,dist=f)
the label of point (2, 8) is 1