forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathport.py
163 lines (143 loc) · 6.04 KB
/
port.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# n(net) o(oil) h(hang) r(rust) 检测模块
import os
import sys
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from mmdet.models import build_detector
import mmcv
import torch
import cv2
import time
import json
from mmcv.runner import load_checkpoint
import PIL.Image as Image
import numpy as np
from torchvision.transforms import transforms
import pycocotools.mask as maskUtils
current_dir = os.path.dirname(os.path.abspath(__file__))
config_file = os.path.join(current_dir, 'configs','config_cascade_rcnn.py')
weight_file = '/home/kilox/weights/nohr_best.pth'
# weight_file = '/Weights/verified/oil_detection_v1/oil_best.pth'
class Object(object):
def __init__(self):
self.class_name = "Unknown"
self.trust = 0.0
self.rank = 0
def to_json(self):
return json.dumps(self.__dict__)
class Port:
def __init__(self):
self.cfg = mmcv.Config.fromfile(config_file)
# 创建模型 , test_cfg 是rpn rcnn的nms等配置
self.detector = build_detector(self.cfg.model, train_cfg=None, test_cfg=self.cfg.test_cfg)
# 加载权重
load_checkpoint(self.detector, weight_file, map_location='cpu')
self.detector = self.detector.to('cuda')
self.detector.eval()
self.class_names = ('油污','鸟巢','锈蚀','飘挂物')
def process(self, image,save=None):
"""
:param image: PIL.Image 输入图像
"""
np_image = np.asarray(image)
img, img_meta = self.prepare_single(np_image)
# forward
with torch.no_grad():
# 传入rescale则代表返回的mask是原图的
result = self.detector.simple_test(img, [img_meta], proposals=None, rescale=True)
# 将mask 以及bbox画在图上
img = self.draw_image(np_image, img_meta, result)
real_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime(time.time()))
output_file_name = os.path.join(real_time + '.jpg')
cv2.imwrite(output_file_name, img)
return False,None,output_file_name
# 将图片添加meta的函数
def prepare_single(self,img):
img_info = {'height': img.shape[0], 'width': img.shape[1]}
img_norm_cfg = self.cfg.img_norm_cfg
size_divisor = self.cfg.data.test.size_divisor
img, scale_factor = mmcv.imrescale(img, (4014,2400), return_scale=True)
img_shape = img.shape
img = mmcv.imnormalize(img, img_norm_cfg.mean, img_norm_cfg.std, img_norm_cfg.to_rgb)
img = mmcv.impad_to_multiple(img, size_divisor)
pad_shape = img.shape
_img = transforms.ToTensor()(img).float()
_img = _img.unsqueeze(0)
_img_meta = dict(
ori_shape=(img_info['height'], img_info['width'], 3),
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=False)
_img = _img.to('cuda')
return _img, _img_meta,
def draw_image(self,img, meta, result, score_thr=0.9):
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
num_imgs = tensor.size(0)
mean = np.array(mean, dtype=np.float32)
std = np.array(std, dtype=np.float32)
imgs = []
for img_id in range(num_imgs):
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
img = mmcv.imdenormalize(
img, mean, std, to_bgr=to_rgb).astype(np.uint8)
imgs.append(np.ascontiguousarray(img))
return imgs
if isinstance(result, tuple):
bbox_result, segm_result = result
else:
bbox_result, segm_result = result, None
h, w, _ = meta['ori_shape']
img_show = img[:h, :w, :].copy()
bboxes = np.vstack(bbox_result)
# 画mask
# # draw segmentation masks
# if segm_result is not None:
# segms = mmcv.concat_list(segm_result)
# inds = np.where(bboxes[:, -1] > score_thr)[0]
# for i in inds:
# color_mask = np.random.randint(
# 0, 256, (1, 3), dtype=np.uint8)
# mask = maskUtils.decode(segms[i]).astype(np.bool)
# # todo fix dimension not equal
# img_check_shape = tuple(img_show.shape[0:2])
# if mask.shape != img_check_shape:
# width_diff = mask.shape[1] - img_check_shape[1]
# if mask.shape[1] < img_check_shape[1]:
# mask = np.pad(mask, (0, width_diff), mode='constant', constant_values=False)
# np.insert(mask, False, )
# else:
# mask = mask[:, :-width_diff]
# img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
# 画bbox
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
assert bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
for bbox, label in zip(bboxes, labels):
bbox_int = bbox.astype(np.int32)
left_top = (bbox_int[0], bbox_int[1])
right_bottom = (bbox_int[2], bbox_int[3])
cv2.rectangle(
img_show, left_top, right_bottom, (0, 255, 0), thickness=2)
label_text = self.class_names[
label] if self.class_names is not None else 'cls {}'.format(label)
if len(bbox) > 4:
label_text += '|{:.02f}'.format(bbox[-1])
cv2.putText(img_show, label_text, (bbox_int[0], bbox_int[1] - 2),
cv2.FONT_HERSHEY_COMPLEX, 2, (0, 255, 0))
return img_show
def test():
pass
if __name__ == '__main__':
im = Image.open('/home/kilox/3.jpg')
port = Port()
print(port.process(im,True))