-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmain_test.py
296 lines (248 loc) · 13.7 KB
/
main_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from __future__ import division
import time
import sys
import yaml
import numpy as np
import os
from algorithms.drl_drqn import DRQN
from utils.memory import Memory
from collections import defaultdict, deque
from envs.test_env import TestEnv
from utils.misc import calculate_ia_penalty
def marl_test(config):
experiment_name = config.setdefault("experiment_name", "")
time_slots = config.setdefault("time_slots", 10000)
simulations = config.setdefault("simulations", 3)
memory_size = config.setdefault("memory_size", 1200)
pretrain_length = config.setdefault("pretrain_length", 6)
step_size = config.setdefault("step_size", 5)
save_freq = config.setdefault("save_freq", 1000)
save_results = config.setdefault("save_results", True)
save_model = config.setdefault("save_model", False)
load_model = config.setdefault("load_model", False)
load_slot = config.setdefault("load_slot", 4999)
training = config.setdefault("training", False)
episode_interval = config.setdefault("episode_interval", 25)
explore_step = config.setdefault("explore", 2000)
greedy_step = config.setdefault("greedy", 20000)
training_stop = config.setdefault("training_stop", 20000) # Stop the training after these time step.
train_after_episode = config.setdefault("train_after_episode", False) # Train after each episode in stead of training after each time slot.
global_reward_avg = config.setdefault("global_reward_avg", False) # Train after each episode in stead of training after each time slot.
save_positions = config.setdefault("save_positions", False) # Train after each episode in stead of training after each time slot.
enable_channel = config.setdefault("enable_channel", False) # Train after each episode in stead of training after each time slot.
batch_size = config["RLAgent"]["batch_size"]
ia_penalty_enable = config.setdefault("ia_penalty_enable", False)
ia_averaging = config.setdefault("ia_averaging", False)
for simulation in range(simulations):
print("-=-=-=-=-=-=-=-=-=-=-= experiment_name: " + experiment_name + " SIMULATION " + str(simulation + 1) + " =-=-=-=-=-=-=-=-=-=-=-")
# Initialize the env.
env = TestEnv(**config["EnvironmentTest"])
if ia_penalty_enable:
ia_penalty_threshold = config.setdefault("ia_penalty_threshold", 5)
ia_penalty_value = config.setdefault("ia_penalty_value", -10)
ia_penalty_counter = {}
previous_actions = {} # store the previous taken action by the UE.
num_users = env.get_total_users()
for user in range(num_users):
ia_penalty_counter[user] = 0
previous_actions[user] = -1
# Initialize the agen
mainDRQN = DRQN(env, name=experiment_name, total_episodes=time_slots/episode_interval, **config["RLAgent"])
#mainDRQN = DeepRecurrentQNetwork(env=env, name=experiment_name, **config["RLAgent"])
if load_model:
print("Load model DRQN time step " + str(load_slot))
save_dir = "save_model/" + "test/"
mainDRQN.load_model(save_dir, load_slot)
# this is experience replay buffer(deque) from which each batch will be sampled and fed to the neural network for training
memory = Memory(max_size=memory_size)
log_reward_slot = []
log_actions_slot = []
log_ia_slot = []
sum_ia_prev = 0
log_x_positions = []
start_time = time.time()
episode = 0 # Used to update the greediness of the algorithm
# cumulative reward
cum_r = [0]
cum_r_slots = [0]
# cumulative collision
cum_collision = [0]
cum_collision_slots = [0]
# this is our input buffer which will be used for predicting next Q-values
history_input = deque(maxlen=step_size)
# env.network.reset_ia()
# to sample random actions for each user
action = env.sample()
#obs = env.step(action)
obs, rews = env.my_step(action, 0)
rews = list(rews)
state = env.obtain_state(obs, action, rews)
# reward = [i[1] for i in obs[:num_users]]
num_users = env.get_total_users()
num_channels = env.get_action_space()
##############################################
for ii in range(pretrain_length*step_size*5):
action = env.sample()
if enable_channel:
obs, reward = env.my_step_ch(action,
0) # obs is a list of tuple with [(ACK,REW) for each user ,(CHANNEL_RESIDUAL_CAPACITY_VECTOR)]
else:
#obs, reward = env.my_step(
# action, 0) # obs is a list of tuple with [(ACK,REW) for each user ,(CHANNEL_RESIDUAL_CAPACITY_VECTOR)]
obs, reward = env.my_step_design(action, 0)
# obs is a list of tuple with [[(ACK,REW) for each user] ,CHANNEL_RESIDUAL_CAPACITY_VECTOR]
next_state = env.obtain_state(obs, action, rews)
#next_state = env.state_generator(action, obs)
memory.add((state, action, rews, next_state))
state = next_state
history_input.append(state)
##############################################
# TODO: now load the positions
env.load_saved_positions()
for time_step in range(time_slots):
#initializing action vector
action = np.zeros([num_users], dtype=np.int32)
#converting input historskyy into numpy array
# TODO: enable below for lstm
state_vector = np.array(history_input) # LSTM
# state_vector = state # DQN
for each_user in range(num_users):
#action[each_user] = mainDRQN.infer_action(each_user, state_vector=state_vector, time_slot=time_step)
if time_step < explore_step and not load_model: # and 0:
action[each_user] = mainDRQN.infer_action(each_user, state_vector=state_vector, episode=episode,
policy="explore")
elif time_step < greedy_step and not load_model: # and 0:
action[each_user] = mainDRQN.infer_action(each_user, state_vector=state_vector, episode=episode)
else:
action[each_user] = mainDRQN.infer_action(each_user, state_vector=state_vector, episode=episode, policy="greedy")
# taking action as predicted from the q values and receiving the observation from the envionment
# obs = env.step(action) # obs is a list of tuple with [(ACK,REW) for each user ,(CHANNEL_RESIDUAL_CAPACITY_VECTOR)]
if save_positions:
user_pos = env.get_x_pos()
log_x_positions.append(user_pos)
if enable_channel:
obs, reward = env.my_step_ch(action, time_step) # obs is a list of tuple with [(ACK,REW) for each user ,(CHANNEL_RESIDUAL_CAPACITY_VECTOR)]
else:
obs, reward = env.my_step(action, time_step) # obs is a list of tuple with [(ACK,REW) for each user ,(CHANNEL_RESIDUAL_CAPACITY_VECTOR)]
#obs, reward = env.my_step_design(action, time_step)
# TODO: update the env topology after each step.
log_actions_slot.append(action)
ia = env.network.get_information_age(time_step)
ia_sum = calculate_ia_penalty(ia)
log_ia_slot.append(ia)
if ia_averaging: # ia based penalty to the reward
ia_penalty = 0
if ia_sum > sum_ia_prev:
ia_penalty = -1
elif ia_sum < sum_ia_prev:
ia_penalty = 1
sum_ia_prev = ia_sum
# Generate next state from action and observation
# next_state = env.state_generator(action, obs) used for DQN
next_state = env.obtain_state(obs, action, reward, episode, mainDRQN.get_eps())
# print (next_state)
# reward for all users given by environment
#reward = [i[1] for i in obs[:num_users]]
# calculating sum of rewards
sum_r = np.sum(reward)
#calculating cumulative reward
cum_r.append(cum_r[-1] + sum_r)
cum_r_slots.append(cum_r_slots[-1] + sum_r)
#If NUM_CHANNELS = 2 , total possible reward = 2 , therefore collision = (2 - sum_r) or (NUM_CHANNELS - sum_r)
collision = num_channels - sum_r
#calculating cumulative collision
cum_collision.append(cum_collision[-1] + collision)
cum_collision_slots.append(cum_collision_slots[-1] + collision)
#############################
# for co-operative policy we will give reward-sum to each user who have contributed
# to play co-operatively and rest 0
# NOTE: I think, I do not need that part since I already use positive and negative reward.
for i in range(len(reward)): # for each user we have this.
#if reward[i] > 0:
if ia_averaging:
# add penalty based on the direction of the Information age.
reward[i] += ia_penalty
if ia_penalty_enable:
if reward[i] < 1 and action[i] == previous_actions[i]:
ia_penalty_counter[i] += 1
else:
ia_penalty_counter[i] = 0
if ia_penalty_counter[i] > ia_penalty_threshold:
reward[i] = ia_penalty_value
previous_actions[i] = action[i]
if global_reward_avg:
reward[i] = reward[i] + sum_r/len(reward) # Add the average total reward to each UE.
#############################
#reward = reward*2 # Add the average total reward to each UE.
log_reward_slot.append(sum_r)
# print (reward)
# print("EPOCH " + str(time_step))
# add new experiences into the memory buffer as (state, action , reward , next_state) for training
memory.add((state, action, reward, next_state))
state = next_state
#add new experience to generate input-history sequence for next state
history_input.append(state)
# Start training.
if not train_after_episode:
if time_step < training_stop and training: #and not load_model:
mainDRQN.train(memory, time_step)
if time_step%(episode_interval) == episode_interval-1:
print("Time step " + str(time_step) + " epsilon " + str(mainDRQN.get_eps())
+ " cum Collison " + str(cum_collision[episode_interval]) + " sum reward " + str(cum_r[episode_interval]) + " total time " + str(time.time()-start_time) )
cum_r = [0]
cum_collision = [0]
episode += 1
# Updates the velocity of the vehicles if activated
env.update_velocity()
# ia = env.network.get_information_age(time_step)
if train_after_episode and time_step > (batch_size+10) and training:
mainDRQN.train(memory, time_step)
if time_step%save_freq == save_freq-1:
# Save the collisions
if save_results:
print("save results for timestep ", time_step + 1)
save_dir = "save_results/" + "test/"
save_dir = save_dir + experiment_name
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
# filename = save_dir + "/collisions" + "_" + str(time_step) +"_sim"+str(simulation)
# np.save(filename, np.asarray(cum_collision_slots))
filename = save_dir + "/rewards" + "_sim"+str(simulation)
np.save(filename, np.asarray(log_reward_slot))
filename = save_dir + "/actions" + "_sim"+str(simulation)
np.save(filename, np.asarray(log_actions_slot))
# filename = save_dir + "/time_step" + "_" + str(time_step)+"_sim"+str(simulation)
# np.save(filename, np.asarray(str(time.time()-start_time)))
filename = save_dir + "/positions" + "_sim"+str(simulation)
np.save(filename, np.asarray(log_x_positions))
#filename = save_dir + "/ia" + "_sim"+str(simulation)
#np.save(filename, np.asarray(log_ia_slot))
#"_" + str(time_step)+
if save_model:
print("save model for timestep ", time_step + 1)
save_dir = "save_model/" + "test/"
#save_dir = save_dir
mainDRQN.save_model(save_dir, time_step,simulation)
if __name__ == '__main__':
# NOTE: This part should be commented to be able to debug in Pycharm.
#if len(sys.argv) < 2:
# print("Run: python <script> <config>")
#sys.exit(1)
#script = sys.argv[0]
#try:
# config = yaml.load(open(sys.argv[1]))
#except:
# config = {}
#config = yaml.load(open("configs/test/drqn/5ue_4r_softmax.yaml"))
experiments = []
## Test 2 check discount factor impact ###
experiments.append("configs/4ue_3r_toy/config_toy_4ue_3r_tests_db_r2_b20_mg_o_index_dis_03.yaml")
# # =======
for i in range(len(experiments)):
config = yaml.load(open(experiments[i]))
experiment_name = config.setdefault("experiment_name", "")
realness = config.setdefault("realness", False)
if realness:
print("This should never happen!!!!")
else:
marl_test(config)