-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathtrain.py
352 lines (308 loc) · 18.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# -*- coding: utf-8 -*-_resnet18_32s
import datetime
import torch
import os
import argparse
import cv2
import time
import numpy as np
import visdom
from torch.autograd import Variable
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR, MultiStepLR
from semseg.dataloader.camvid_loader import camvidLoader
from semseg.dataloader.cityscapes_loader import cityscapesLoader
from semseg.dataloader.freespace_loader import freespaceLoader
from semseg.dataloader.movingmnist_loader import movingmnistLoader
from semseg.dataloader.segmpred_loader import segmpredLoader
from semseg.loss import cross_entropy2d
from semseg.metrics import scores
from semseg.modelloader.EDANet import EDANet
from semseg.modelloader.bisenet import BiSeNet
from semseg.modelloader.deconvnet import DeConvResNet50, DeConvResNet18
from semseg.modelloader.deeplabv3 import Res_Deeplab_101, Res_Deeplab_50
from semseg.modelloader.drn import drn_d_22, DRNSeg, drn_a_asymmetric_18, drn_a_asymmetric_ibn_a_18, drnseg_a_50, drnseg_a_18, drnseg_a_34, drnseg_e_22, drnseg_a_asymmetric_18, drnseg_a_asymmetric_ibn_a_18, drnseg_d_22, drnseg_d_38
from semseg.modelloader.drn_a_irb import drnsegirb_a_18
from semseg.modelloader.drn_a_refine import drnsegrefine_a_18
from semseg.modelloader.duc_hdc import ResNetDUC, ResNetDUCHDC
from semseg.modelloader.enet import ENet
from semseg.modelloader.enetv2 import ENetV2
from semseg.modelloader.erfnet import erfnet
from semseg.modelloader.fc_densenet import fcdensenet103, fcdensenet56, fcdensenet_tiny
from semseg.modelloader.fcn import fcn, fcn_32s, fcn_16s, fcn_8s
from semseg.modelloader.fcn_mobilenet import fcn_MobileNet, fcn_MobileNet_32s, fcn_MobileNet_16s, fcn_MobileNet_8s
from semseg.modelloader.fcn_resnet import fcn_resnet18, fcn_resnet34, fcn_resnet18_32s, fcn_resnet18_16s, \
fcn_resnet18_8s, fcn_resnet34_32s, fcn_resnet34_16s, fcn_resnet34_8s, fcn_resnet50_32s, fcn_resnet50_16s, fcn_resnet50_8s
from semseg.modelloader.fcn_shufflenet import fcn_shufflenet_32s, fcn_shufflenet_16s, fcn_shufflenet_8s
from semseg.modelloader.gcn import gcn_resnet18, gcn_resnet34, gcn_resnet50, gcn_resnet101
from semseg.modelloader.lrn import lrn_vgg16
from semseg.modelloader.segnet import segnet, segnet_squeeze, segnet_alignres, segnet_vgg19
from semseg.modelloader.segnet_unet import segnet_unet
from semseg.modelloader.sqnet import sqnet
from semseg.schedulers import ConstantLR, PolynomialLR
from semseg.utils.get_class_weights import median_frequency_balancing, ENet_weighing
def train(args):
now = datetime.datetime.now()
now_str = '{}-{}-{} {}:{}:{}'.format(now.year, now.month, now.day, now.hour, now.minute, now.second)
# print('now:', now)
# print('now_str:', now_str)
if args.vis:
# start visdom and close all window
vis = visdom.Visdom(env=now_str)
vis.close()
class_weight = None
local_path = os.path.expanduser(args.dataset_path)
train_dst = None
val_dst = None
if args.dataset == 'CamVid':
train_dst = camvidLoader(local_path, is_transform=True, is_augment=args.data_augment, split='train')
val_dst = camvidLoader(local_path, is_transform=True, is_augment=False, split='val')
trainannot_image_dir = os.path.expanduser(os.path.join(local_path, "trainannot"))
trainannot_image_files = [os.path.join(trainannot_image_dir, file) for file in os.listdir(trainannot_image_dir) if file.endswith('.png')]
if args.class_weighting=='MFB':
class_weight = median_frequency_balancing(trainannot_image_files, num_classes=12)
class_weight = torch.tensor(class_weight)
elif args.class_weighting=='ENET':
class_weight = ENet_weighing(trainannot_image_files, num_classes=12)
class_weight = torch.tensor(class_weight)
elif args.dataset == 'CityScapes':
train_dst = cityscapesLoader(local_path, is_transform=True, split='train')
val_dst = cityscapesLoader(local_path, is_transform=True, split='val')
elif args.dataset == 'SegmPred':
train_dst = segmpredLoader(local_path, is_transform=True, split='train')
val_dst = segmpredLoader(local_path, is_transform=True, split='train')
elif args.dataset == 'MovingMNIST':
# class_weight = [0.1, 0.5]
# class_weight = torch.tensor(class_weight)
train_dst = movingmnistLoader(local_path, is_transform=True, split='train')
val_dst = movingmnistLoader(local_path, is_transform=True, split='val')
elif args.dataset == 'FreeSpace':
train_dst = freespaceLoader(local_path, is_transform=True, split='train')
val_dst = freespaceLoader(local_path, is_transform=True, split='val')
else:
print('{} dataset does not implement'.format(args.dataset))
exit(0)
if args.cuda:
if class_weight is not None:
class_weight = class_weight.cuda()
print('class_weight:', class_weight)
train_loader = torch.utils.data.DataLoader(train_dst, batch_size=args.batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_dst, batch_size=1, shuffle=True)
start_epoch = 0
best_mIoU = 0
if args.resume_model != '':
model = torch.load(args.resume_model)
start_epoch_id1 = args.resume_model.rfind('_')
start_epoch_id2 = args.resume_model.rfind('.')
start_epoch = int(args.resume_model[start_epoch_id1+1:start_epoch_id2])
else:
# model = eval(args.structure)(n_classes=args.n_classes, pretrained=args.init_vgg16)
try:
model = eval(args.structure)(n_classes=args.n_classes, pretrained=args.init_vgg16)
except:
print('missing structure or not support')
exit(0)
# ---------------for testing SegmPred---------------
if args.dataset == 'MovingMNIST':
input_channel = 1*9
elif args.dataset == 'SegmPred':
input_channel = 19*4
if args.structure == 'drnseg_a_18':
model = drnseg_a_18(n_classes=args.n_classes, pretrained=args.init_vgg16, input_channel=input_channel)
# ---------------for testing SegmPred---------------
if args.resume_model_state_dict != '':
try:
# from model save format get useful information, such as miou, epoch
miou_model_name_str = '_miou_'
class_model_name_str = '_class_'
miou_id1 = args.resume_model_state_dict.find(miou_model_name_str)+len(miou_model_name_str)
miou_id2 = args.resume_model_state_dict.find(class_model_name_str)
best_mIoU = float(args.resume_model_state_dict[miou_id1:miou_id2])
start_epoch_id1 = args.resume_model_state_dict.rfind('_')
start_epoch_id2 = args.resume_model_state_dict.rfind('.')
start_epoch = int(args.resume_model_state_dict[start_epoch_id1 + 1:start_epoch_id2])
pretrained_dict = torch.load(args.resume_model_state_dict, map_location='cpu')
model.load_state_dict(pretrained_dict)
except KeyError:
print('missing resume_model_state_dict or wrong type')
if args.cuda:
model.cuda()
print('start_epoch:', start_epoch)
print('best_mIoU:', best_mIoU)
if args.solver == 'SGD':
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=0.99, weight_decay=5e-4)
elif args.solver == 'RMSprop':
optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=0.99, weight_decay=5e-4)
elif args.solver == 'Adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=5e-4)
else:
print('missing solver or not support')
exit(0)
# when observerd object dose not decrease scheduler will let the optimizer learing rate decrease
# scheduler = ReduceLROnPlateau(optimizer, 'min', patience=100, min_lr=1e-10, verbose=True)
if args.lr_policy == 'Constant':
scheduler = ConstantLR(optimizer)
elif args.lr_policy == 'Polynomial':
scheduler = PolynomialLR(optimizer, max_iter=args.training_epoch, power=0.9) # base lr=0.01 power=0.9 like PSPNet
elif args.lr_policy == 'MultiStep':
scheduler = MultiStepLR(optimizer, milestones=[10, 50, 90], gamma=0.1) # base lr=0.01 power=0.9 like PSPNet
# scheduler = StepLR(optimizer, step_size=1, gamma=0.1)
data_count = int(train_dst.__len__() * 1.0 / args.batch_size)
print('data_count:', data_count)
# iteration_step = 0
train_gts, train_preds = [], []
for epoch in range(start_epoch+1, args.training_epoch, 1):
loss_epoch = 0
scheduler.step()
optimizer.zero_grad() # when train next time zero all grad, just acc the grad when the epoch training
for i, (imgs, labels) in enumerate(train_loader):
# if i==1:
# break
model.train()
# 最后的几张图片可能不到batch_size的数量,比如batch_size=4,可能只剩3张
imgs_batch = imgs.shape[0]
if imgs_batch != args.batch_size:
break
# iteration_step += 1
imgs = Variable(imgs)
labels = Variable(labels)
if args.cuda:
imgs = imgs.cuda()
labels = labels.cuda()
outputs = model(imgs)
# print('imgs.size:', imgs.size())
# print('labels.size:', labels.size())
# print('outputs.size:', outputs.size())
loss = cross_entropy2d(outputs, labels, weight=class_weight)
# add grad backward the avg loss
loss_grad_acc_avg = loss*1.0/args.grad_acc_steps
loss_grad_acc_avg.backward()
loss_np = loss.cpu().data.numpy()
loss_epoch += loss_np
if (i+1)%args.grad_acc_steps == 0:
optimizer.step()
# 一次backward后如果不清零,梯度是累加的
optimizer.zero_grad()
# ------------------train metris-------------------------------
train_pred = outputs.cpu().data.max(1)[1].numpy()
train_gt = labels.cpu().data.numpy()
for train_gt_, train_pred_ in zip(train_gt, train_pred):
train_gts.append(train_gt_)
train_preds.append(train_pred_)
# ------------------train metris-------------------------------
if args.vis and i%50==0:
pred_labels = outputs.cpu().data.max(1)[1].numpy()
label_color = train_dst.decode_segmap(labels.cpu().data.numpy()[0]).transpose(2, 0, 1)
pred_label_color = train_dst.decode_segmap(pred_labels[0]).transpose(2, 0, 1)
win = 'label_color'
vis.image(label_color, win=win, opts=dict(title='Gt', caption='Ground Truth'))
win = 'pred_label_color'
vis.image(pred_label_color, win=win, opts=dict(title='Pred', caption='Prediction'))
# 显示一个周期的loss曲线
if args.vis:
win = 'loss_iteration'
loss_np_expand = np.expand_dims(loss_np, axis=0)
win_res = vis.line(X=np.ones(1)*(i+data_count*(epoch-1)+1), Y=loss_np_expand, win=win, update='append')
if win_res != win:
vis.line(X=np.ones(1)*(i+data_count*(epoch-1)+1), Y=loss_np_expand, win=win, opts=dict(title=win, xlabel='iteration', ylabel='loss'))
# val result on val dataset and pick best to save
if args.val_interval > 0 and epoch % args.val_interval == 0:
print('----starting val----')
model.eval()
val_gts, val_preds = [], []
for val_i, (val_imgs, val_labels) in enumerate(val_loader):
# print(val_i)
val_imgs = Variable(val_imgs, volatile=True)
val_labels = Variable(val_labels, volatile=True)
if args.cuda:
val_imgs = val_imgs.cuda()
val_labels = val_labels.cuda()
val_outputs = model(val_imgs)
val_pred = val_outputs.cpu().data.max(1)[1].numpy()
val_gt = val_labels.cpu().data.numpy()
for val_gt_, val_pred_ in zip(val_gt, val_pred):
val_gts.append(val_gt_)
val_preds.append(val_pred_)
score, class_iou = scores(val_gts, val_preds, n_class=args.n_classes)
for k, v in score.items():
print(k, v)
if k == 'Mean IoU : \t':
v_iou = v
if v > best_mIoU:
best_mIoU = v_iou
torch.save(model.state_dict(), '{}_{}_miou_{}_class_{}_{}.pt'.format(args.structure, args.dataset, best_mIoU, args.n_classes, epoch))
# 显示校准周期的mIoU
if args.vis:
win = 'mIoU_epoch'
v_iou_expand = np.expand_dims(v_iou, axis=0)
win_res = vis.line(X=np.ones(1)*epoch*args.val_interval, Y=v_iou_expand, win=win, update='append')
if win_res != win:
vis.line(X=np.ones(1)*epoch*args.val_interval, Y=v_iou_expand, win=win, opts=dict(title=win, xlabel='epoch', ylabel='mIoU'))
for class_i in range(args.n_classes):
print(class_i, class_iou[class_i])
print('----ending val----')
# 显示多个周期的loss曲线
loss_avg_epoch = loss_epoch / (data_count * 1.0)
# print(loss_avg_epoch)
if args.vis:
win = 'loss_epoch'
loss_avg_epoch_expand = np.expand_dims(loss_avg_epoch, axis=0)
win_res = vis.line(X=np.ones(1)*epoch, Y=loss_avg_epoch_expand, win=win, update='append')
if win_res != win:
vis.line(X=np.ones(1)*epoch, Y=loss_avg_epoch_expand, win=win, opts=dict(title=win, xlabel='epoch', ylabel='loss'))
if args.vis:
win = 'lr_epoch'
lr_epoch = np.array(scheduler.get_lr())
lr_epoch_expand = np.expand_dims(lr_epoch, axis=0)
win_res = vis.line(X=np.ones(1)*epoch, Y=lr_epoch_expand, win=win, update='append')
if win_res != win:
vis.line(X=np.ones(1)*epoch, Y=lr_epoch_expand, win=win, opts=dict(title=win, xlabel='epoch', ylabel='lr'))
# ------------------train metris-------------------------------
if args.vis:
score, class_iou = scores(train_gts, train_preds, n_class=args.n_classes)
for k, v in score.items():
print(k, v)
if k == 'Overall Acc : \t':
# 显示校准周期的mIoU
overall_acc = v
if args.vis:
win = 'acc_epoch'
overall_acc_expand = np.expand_dims(overall_acc, axis=0)
win_res = vis.line(X=np.ones(1) * epoch, Y=overall_acc_expand, win=win,
update='append')
if win_res != win:
vis.line(X=np.ones(1) * epoch, Y=overall_acc_expand, win=win,
opts=dict(title=win, xlabel='epoch', ylabel='accuracy'))
# clear for new training metrics
train_gts, train_preds = [], []
# ------------------train metris-------------------------------
if args.save_model and epoch%args.save_epoch==0:
torch.save(model.state_dict(), '{}_{}_class_{}_{}.pt'.format(args.structure, args.dataset, args.n_classes, epoch))
# best training: python train.py --resume_model fcn32s_camvid_9.pkl --save_model True
# --init_vgg16 True --dataset_path /home/cgf/Data/CamVid --batch_size 1 --vis True
if __name__=='__main__':
# print('train----in----')
parser = argparse.ArgumentParser(description='training parameter setting')
parser.add_argument('--structure', type=str, default='ENetV2', help='use the net structure to segment [ fcn_32s ResNetDUC segnet ENet drn_d_22 ]')
parser.add_argument('--solver', type=str, default='Adam', help='use the solver to optimizer net [ SGD Adam RMSprop ]')
parser.add_argument('--grad_acc_steps', type=int, default=1, help='gpu memory not enough use grad accumulation act like large batch [ 1 ]')
parser.add_argument('--resume_model', type=str, default='', help='resume model path [ fcn32s_camvid_9.pkl ]')
parser.add_argument('--resume_model_state_dict', type=str, default='', help='resume model state dict path [ fcn32s_camvid_9.pt ]')
parser.add_argument('--save_model', type=bool, default=False, help='save model [ False ]')
parser.add_argument('--save_epoch', type=int, default=1, help='save model after epoch [ 1 ]')
parser.add_argument('--training_epoch', type=int, default=500, help='training epoch end training model [ 30000 ]')
parser.add_argument('--init_vgg16', type=bool, default=False, help='init model using vgg16 weights [ False ]')
parser.add_argument('--dataset', type=str, default='CamVid', help='train dataset [ CamVid CityScapes FreeSpace SegmPred MovingMNIST ]')
parser.add_argument('--dataset_path', type=str, default='~/Data/CamVid', help='train dataset path [ ~/Data/CamVid ~/Data/cityscapes ~/Data/FreeSpaceDataset ~/Data/SegmPred ~/Data/mnist_test_seq.npy]')
parser.add_argument('--data_augment', type=bool, default=True, help='enlarge the training data [ True False ]')
parser.add_argument('--class_weighting', type=str, default='MFB', help='weighting class [ MFB ENET ]')
parser.add_argument('--batch_size', type=int, default=1, help='train dataset batch size [ 1 ]')
parser.add_argument('--val_interval', type=int, default=-1, help='val dataset interval unit epoch [ 3 ]')
parser.add_argument('--n_classes', type=int, default=12, help='train class num [ 12 ]')
parser.add_argument('--lr', type=float, default=1e-4, help='train learning rate [ 0.00001 ]')
parser.add_argument('--lr_policy', type=str, default='Polynomial', help='train learning policy [ Constant Polynomial MultiStep ]')
parser.add_argument('--vis', type=bool, default=True, help='visualize the training results [ False ]')
parser.add_argument('--cuda', type=bool, default=False, help='use cuda [ False ]')
args = parser.parse_args()
print(args)
train(args)
# print('train----out----')