-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03a more analysis.R
143 lines (121 loc) · 5.71 KB
/
03a more analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
## plotting rides by unique days in tiled grid for the year
library(tidyverse) # to do tidyverse things
library(tidylog) # to get a log of what's happening to the data
library(janitor) # tools for data cleaning
library(gt) # tables!
library(ggtext) # ggplot text helpers
# some custom functions
source("~/Data/r/basic functions.R")
## unique days
# using code from https://github.com/curatedmess/TidyTuesday/blob/main/2024/01022024/runs_2024.R
# get data ready
strava_data <- readRDS("data/strava_activities_final.rds") %>%
mutate(activity_hour2 = activity_hour + 1)
glimpse(strava_data)
ridedates1 <- strava_data %>%
filter(activity_year == 2023) %>%
group_by(activity_date_p) %>%
mutate(rides_day = n()) %>%
ungroup() %>%
select(distance_km, year = activity_year, month = activity_month_t, day = activity_wday, date = activity_date_p, rides_day)
glimpse(ridedates1)
# create date scaffold ----------------------------------------------------
scaffold_df <- data.frame(date = date(seq(from = as.Date("2023-01-01"), to = as.Date("2023-12-31"), by = 1)))
# create df with scaffold to show all days --------------------------------
ridedates <- full_join(ridedates1, scaffold_df) %>%
mutate(distance_km = ifelse(is.na(distance_km), 0, distance_km)) %>%
mutate(rides_day = ifelse(is.na(rides_day), 0, rides_day)) %>%
group_by(date) %>%
mutate(distance_day = sum(distance_km)) %>%
distinct(date, .keep_all = TRUE) %>%
ungroup() %>%
mutate(color = case_when(distance_day == 0 ~ "#171c22",
distance_day > 0 & distance_day <= 4.5 ~ "#0E4429",
distance_day > 4.5 & distance_day <= 10 ~ "#006D32",
distance_day > 10 & distance_day <= 20 ~ "#26A642",
distance_day > 20 ~ "#39D354")) %>%
select(date, distance_day, rides_day, color)
glimpse(ridedates)
# for grid
start_day <- as.Date("2023-01-01")
end_day <- as.Date("2023-12-31")
df_grid <- tibble(date = seq(start_day, end_day, by = "1 day")) %>%
mutate(year = year(date),
month_abb = month(date, label = TRUE, abbr = TRUE),
day = wday(date, label = TRUE),
first_day_of_year = floor_date(date, "year"),
week_of_year = as.integer((date - first_day_of_year + wday(first_day_of_year) - 1) / 7) + 1) %>%
left_join(ridedates) %>%
arrange(date) %>%
mutate(num = row_number()) %>%
mutate(day = as.character(day)) %>%
mutate(day = factor(day, levels = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"))) %>%
mutate(distance_year = round(sum(distance_day), 0)) %>%
mutate(rides_year = sum(rides_day)) %>%
mutate(ride_day = ifelse(rides_day > 0, 1, 0)) %>%
mutate(ride_days_unique = sum(ride_day)) %>%
mutate(pct_days_ridden = round((ride_days_unique / 365) * 100, 1)) %>%
select(-ride_day)
glimpse(df_grid)
df_labels <- df_grid %>%
group_by(month_abb) %>%
arrange(date) %>%
filter(week_of_year == 1 | day == "Sun") %>%
slice(1)
glimpse(df_labels)
# legend color objects ----------------------------------------------------
df_legend <- data.frame(y = c(-1, -1, -1, -1, -1),
x = c(44, 45, 46, 47, 48),
color = c("#171c22", "#0E4429", "#006D32", "#26A642", "#39D354"))
df_legend_labels <- data.frame(y = c(-1, -1),
x = c(43, 49),
label = c("Fewer km (black = 0)", "More km"),
hjust = c(1, 0))
df_legend <- data.frame(y = c(-1, -1, -1, -1, -1),
x = c(44, 45, 46, 47, 48),
color = c("#171c22", "#0E4429", "#006D32", "#26A642", "#39D354"))
ggplot() +
statebins:::geom_rtile(data = df_grid,
aes(y = fct_rev(day), x = week_of_year, fill = color), radius = unit(1.75, "pt"),
color = "white", size = 1) +
statebins:::geom_rtile(data = df_legend,
aes(y = y, x = x, fill = color),
radius = unit(1.75, "pt"), color = "#0d1117", size = 1) +
# geom_text(data = df_grid,
# aes(x = -2, y = 10,
# label = paste0(rides_year, " rides this year on ", ride_days_unique,
# " unique days, or ", pct_days_ridden, "% of all days")),
# #family = font,
# hjust = 0, color = "#848d97", size = 4) +
geom_text(data = df_labels, aes(x = week_of_year, y = 8, label = month_abb),
#family = font,
hjust = 0.3, color = "#848d97", size = 3, check_overlap = TRUE) +
geom_text(data = df_grid, aes(x = -1.9, y = day, label = day),
#family = font,
color = "#848d97", size = 3, hjust = 0, check_overlap = TRUE) +
geom_text(data = df_legend_labels, aes(x, y, label = label, hjust = hjust),
#family = font,
color = "#848d97", size = 3) +
geom_text(data = df_grid,
aes(x = 0, y = -1, label = paste0("Total kilometers ridden = ", scales::comma(distance_year))),
#family = font,
color = "#848d97", size = 4, hjust = 0) +
scale_y_discrete(breaks = c("Mon", "Wed", "Fri")) +
expand_limits(y = c(-2, 12)) +
scale_x_continuous(expand = c(-2, NA)) +
scale_fill_identity() +
# facet_wrap(~factor(year, levels = c(2023, 2022, 2021, 2020)), ncol = 1) +
labs(title = glue::glue("{df_grid$rides_year}", " rides this year on {df_grid$ride_days_unique} unique days, or {df_grid$pct_days_ridden} % of all days"),
subtitle = "Black square = no ride that day",
caption = "Strava data via rstrava app & Strava API") +
coord_equal() +
theme_void() +
theme(plot.title = element_text(size = 18, vjust = -10, color = "#848d97"),
plot.title.position = "plot",
plot.subtitle = element_text(size = 14, vjust = -16, color = "#848d97", margin = margin(t = 8, b = 10)),
plot.caption.position = "plot",
plot.caption = element_text(size = 9, color = "#848d97", vjust = 5,
hjust = .9, margin = margin(t = 25)),
legend.position = "none",
plot.margin = unit(c(0.5, 1, 0.5, 1), "cm"),
plot.background = element_rect(color = NA, fill = "#FFFFFF"))