-
Notifications
You must be signed in to change notification settings - Fork 51
/
cipher.cc
655 lines (581 loc) · 29.2 KB
/
cipher.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright 2013-2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// PKCS#11 s11.8: Encryption functions (on symmetric keys)
// C_EncryptInit
// C_Encrypt
// C_EncryptUpdate
// C_EncryptFinal
// PKCS#11 s11.9: Decryption functions (on symmetric keys)
// C_DecryptInit
// C_Decrypt
// C_DecryptUpdate
// C_DecryptFinal
#include <cstdlib>
#include "pkcs11test.h"
#include <map>
#include <string>
#include <vector>
using namespace std; // So sue me
namespace pkcs11 {
namespace test {
namespace {
struct TestData {
string key; // Hex
string iv; // Hex
string plaintext; // Hex
string ciphertext; // Hex
};
map<string, vector<TestData> > kTestVectors = {
{ "DES-ECB", {{"8000000000000000", "", "0000000000000000", "95A8D72813DAA94D"},
{"4000000000000000", "", "0000000000000000", "0EEC1487DD8C26D5"}, }},
{ "3DES-ECB", {{"800000000000000000000000000000000000000000000000", "", "0000000000000000", "95A8D72813DAA94D"},
{"020202020202020202020202020202020202020202020202", "", "0202020202020202", "E127C2B61D98E6E2"}, }},
{ "AES-ECB", {{"2b7e151628aed2a6abf7158809cf4f3c", "", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97"},
{"2b7e151628aed2a6abf7158809cf4f3c", "", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf"}, }},
{ "AES-CBC", {{"2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", "6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d"},
{"2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", "ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b2"}, }},
};
} // namespace
TEST_P(SecretKeyTest, EncryptDecrypt) {
// First encrypt the data.
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, ciphertext_len);
if (g_verbose) cout << "CT: " << hex_data(ciphertext, ciphertext_len) << endl;
// Now decrypt the data.
ASSERT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE recovered_plaintext[1024];
CK_ULONG recovered_plaintext_len = sizeof(recovered_plaintext);
EXPECT_CKR_OK(g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
recovered_plaintext, &recovered_plaintext_len));
if (g_verbose) cout << "PT: " << hex_data(recovered_plaintext, recovered_plaintext_len) << endl;
EXPECT_EQ(kNumBlocks * info_.blocksize, recovered_plaintext_len);
EXPECT_EQ(0, memcmp(plaintext_.get(), recovered_plaintext, recovered_plaintext_len));
}
TEST_P(SecretKeyTest, EncryptFailDecrypt) {
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Corrupt a byte.
ciphertext[0]++;
// Now decrypt the data.
CK_BYTE recovered_plaintext[1024];
CK_ULONG recovered_plaintext_len = sizeof(recovered_plaintext);
ASSERT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
recovered_plaintext, &recovered_plaintext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, recovered_plaintext_len);
EXPECT_NE(0, memcmp(plaintext_.get(), recovered_plaintext, recovered_plaintext_len));
}
TEST_P(SecretKeyTest, EncryptDecryptGetSpace) {
// First encrypt the data.
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = 0;
// Provide no buffer => get OK return code and the required length.
EXPECT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
NULL_PTR, &ciphertext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, ciphertext_len);
// Provide too-small buffer => get too-small return code and the required length.
ciphertext_len = (kNumBlocks * info_.blocksize) - 1;
memset(ciphertext, 0xAB, sizeof(ciphertext));
EXPECT_CKR(CKR_BUFFER_TOO_SMALL,
g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, ciphertext_len);
EXPECT_EQ(0xAB, ciphertext[0]); // buffer unaffected
ciphertext_len = sizeof(ciphertext);
EXPECT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Now decrypt the data.
ASSERT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE recovered_plaintext[1024];
CK_ULONG recovered_plaintext_len = 0;
// Provide no buffer => get OK return code and the required length.
EXPECT_CKR_OK(g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
NULL_PTR, &recovered_plaintext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, recovered_plaintext_len);
// Provide too-small buffer => get too-small return code and the required length.
recovered_plaintext_len = (kNumBlocks * info_.blocksize) - 1;
memset(recovered_plaintext, 0xAB, sizeof(recovered_plaintext));
EXPECT_CKR(CKR_BUFFER_TOO_SMALL,
g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
recovered_plaintext, &recovered_plaintext_len));
EXPECT_EQ(kNumBlocks * info_.blocksize, recovered_plaintext_len);
EXPECT_EQ(0xAB, recovered_plaintext[0]); // buffer unaffected
recovered_plaintext_len = sizeof(recovered_plaintext);
EXPECT_CKR_OK(g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
recovered_plaintext, &recovered_plaintext_len));
EXPECT_EQ(0, memcmp(plaintext_.get(), recovered_plaintext, recovered_plaintext_len));
}
TEST_P(SecretKeyTest, EncryptDecryptParts) {
// First encrypt the data block by block.
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_bufsize = sizeof(ciphertext);
CK_ULONG ciphertext_len = 0;
CK_BYTE_PTR part;
CK_ULONG part_len;
for (int block = 0; block < kNumBlocks; ++block) {
part = ciphertext + (block * info_.blocksize);
part_len = ciphertext_bufsize - (part - ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptUpdate(session_,
plaintext_.get() + block * info_.blocksize, info_.blocksize,
part, &part_len));
EXPECT_EQ(info_.blocksize, part_len);
if (g_verbose) cout << "CT[" << block << "]: " << hex_data(part, part_len) << endl;
ciphertext_len += part_len;
}
part = ciphertext + (kNumBlocks * info_.blocksize);
part_len = ciphertext_len - (part - ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptFinal(session_, part, &part_len));
EXPECT_EQ(0, part_len);
ciphertext_len += part_len;
EXPECT_EQ(kNumBlocks * info_.blocksize, ciphertext_len);
// Check we get the same result as a one-shot encryption.
CK_BYTE ciphertext2[1024];
CK_ULONG ciphertext2_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext2, &ciphertext2_len));
EXPECT_EQ(hex_data(ciphertext, ciphertext_len), hex_data(ciphertext2, ciphertext2_len));
// Now decrypt the data.
ASSERT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE recovered_plaintext[1024];
CK_ULONG recovered_plaintext_bufsize = sizeof(recovered_plaintext);
CK_ULONG recovered_plaintext_len = 0;
for (int block = 0; block < kNumBlocks; ++block) {
part = recovered_plaintext + (block * info_.blocksize);
part_len = recovered_plaintext_bufsize - (part - recovered_plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptUpdate(session_,
ciphertext + (block * info_.blocksize), info_.blocksize,
part, &part_len));
EXPECT_EQ(info_.blocksize, part_len);
if (g_verbose) cout << "PT[" << block << "]: " << hex_data(part, part_len) << endl;
recovered_plaintext_len += part_len;
}
part = recovered_plaintext + (kNumBlocks * info_.blocksize);
part_len = recovered_plaintext_bufsize - (part - recovered_plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptFinal(session_, part, &part_len));
EXPECT_EQ(0, part_len);
ciphertext_len += part_len;
EXPECT_EQ(kNumBlocks * info_.blocksize, recovered_plaintext_len);
EXPECT_EQ(0, memcmp(plaintext_.get(), recovered_plaintext, recovered_plaintext_len));
}
TEST_P(SecretKeyTest, EncryptDecryptInitInvalid) {
CK_MECHANISM mechanism = {999, NULL_PTR, 0};
EXPECT_CKR(CKR_MECHANISM_INVALID,
g_fns->C_EncryptInit(session_, &mechanism, key_.handle()));
EXPECT_CKR(CKR_MECHANISM_INVALID,
g_fns->C_DecryptInit(session_, &mechanism, key_.handle()));
mechanism.mechanism = info_.mode;
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_EncryptInit(INVALID_SESSION_HANDLE, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_DecryptInit(INVALID_SESSION_HANDLE, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_KEY_HANDLE_INVALID,
g_fns->C_EncryptInit(session_, &mechanism_, INVALID_OBJECT_HANDLE));
EXPECT_CKR(CKR_KEY_HANDLE_INVALID,
g_fns->C_DecryptInit(session_, &mechanism_, INVALID_OBJECT_HANDLE));
CK_RV rv;
rv = g_fns->C_EncryptInit(session_, NULL_PTR, key_.handle());
EXPECT_TRUE(rv == CKR_ARGUMENTS_BAD || rv == CKR_MECHANISM_INVALID) << " rv=" << CK_RV_(rv);
rv = g_fns->C_DecryptInit(session_, NULL_PTR, key_.handle());
EXPECT_TRUE(rv == CKR_ARGUMENTS_BAD || rv == CKR_MECHANISM_INVALID) << " rv=" << CK_RV_(rv);
// Can't perform RSA with a symmetric key.
CK_MECHANISM rsa_mechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
EXPECT_CKR(CKR_KEY_TYPE_INCONSISTENT,
g_fns->C_EncryptInit(session_, &rsa_mechanism, key_.handle()));
EXPECT_CKR(CKR_KEY_TYPE_INCONSISTENT,
g_fns->C_DecryptInit(session_, &rsa_mechanism, key_.handle()));
// Can't initialize the operation twice.
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_OPERATION_ACTIVE,
g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
// Finish active operation before starting a new one
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
EXPECT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_OPERATION_ACTIVE,
g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
}
TEST_P(SecretKeyTest, EncryptErrors) {
// Variety of bad arguments to C_Encrypt. Each error terminates the
// operation and so need re-initialization.
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
NULL_PTR, NULL_PTR));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_Encrypt(INVALID_SESSION_HANDLE,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
ciphertext_len = sizeof(ciphertext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_Encrypt(session_,
NULL_PTR, info_.blocksize,
ciphertext, &ciphertext_len));
// Try to encrypt an incomplete block.
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
unique_ptr<CK_BYTE, freer> partial(randmalloc(info_.blocksize - 1));
ciphertext_len = sizeof(ciphertext);
CK_RV rv = g_fns->C_Encrypt(session_,
partial.get(), info_.blocksize - 1,
ciphertext, &ciphertext_len);
EXPECT_TRUE(rv == CKR_DATA_LEN_RANGE || rv == CKR_FUNCTION_FAILED) << " rv=" << CK_RV_(rv);
}
TEST_P(SecretKeyTest, DecryptErrors) {
// First encrypt the data.
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Variety of bad arguments to C_Decrypt. Each error terminates the
// operation and so need re-initialization.
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_Decrypt(session_,
ciphertext, ciphertext_len,
NULL_PTR, NULL_PTR));
CK_BYTE plaintext[1024];
CK_ULONG plaintext_len = sizeof(plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_Decrypt(INVALID_SESSION_HANDLE,
ciphertext, ciphertext_len,
plaintext, &plaintext_len));
plaintext_len = sizeof(plaintext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_Decrypt(session_,
NULL_PTR, info_.blocksize,
plaintext, &plaintext_len));
// Try to decrypt an incomplete block.
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
unique_ptr<CK_BYTE, freer> partial(randmalloc(info_.blocksize - 1));
plaintext_len = sizeof(plaintext);
CK_RV rv = g_fns->C_Decrypt(session_,
partial.get(), info_.blocksize - 1,
plaintext, &plaintext_len);
EXPECT_TRUE(rv == CKR_DATA_LEN_RANGE ||
rv == CKR_ENCRYPTED_DATA_LEN_RANGE ||
rv == CKR_FUNCTION_FAILED) << " rv=" << CK_RV_(rv);
}
TEST_P(SecretKeyTest, EncryptUpdateErrors) {
// Variety of bad arguments to C_EncryptUpdate. Each error terminates the
// operation and so need re-initialization.
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_EncryptUpdate(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
NULL_PTR, NULL_PTR));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_EncryptUpdate(INVALID_SESSION_HANDLE,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
ciphertext_len = sizeof(ciphertext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_EncryptUpdate(session_,
NULL_PTR, info_.blocksize,
ciphertext, &ciphertext_len));
}
TEST_P(SecretKeyTest, EncryptModePolicing1) {
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_EncryptUpdate(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Having started an incremental operation, a one-shot operation fails.
EXPECT_CKR(CKR_OPERATION_ACTIVE,
g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
}
TEST_P(SecretKeyTest, EncryptModePolicing2) {
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = 0;
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
NULL_PTR, &ciphertext_len));
// Having started a one-shot operation (but not yet retrieved its results),
// an incremental operation fails.
EXPECT_CKR(CKR_OPERATION_ACTIVE,
g_fns->C_EncryptUpdate(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
}
TEST_P(SecretKeyTest, EncryptInvalidIV) {
if (!info_.has_iv) return;
CK_MECHANISM mechanism = {info_.mode, iv_.get(), (CK_ULONG)(info_.blocksize - 1)};
EXPECT_CKR(CKR_MECHANISM_PARAM_INVALID,
g_fns->C_EncryptInit(session_, &mechanism, key_.handle()));
/*
// TODO: reinstate
CK_MECHANISM mechanism2 = {info_.mode, NULL_PTR, (CK_ULONG)info_.blocksize};
EXPECT_CKR(CKR_MECHANISM_PARAM_INVALID,
g_fns->C_EncryptInit(session_, &mechanism2, key_.handle()));
*/
}
TEST_P(SecretKeyTest, DecryptInvalidIV) {
if (!info_.has_iv) return;
CK_MECHANISM mechanism = {info_.mode, iv_.get(), (CK_ULONG)(info_.blocksize - 1)};
EXPECT_CKR(CKR_MECHANISM_PARAM_INVALID,
g_fns->C_DecryptInit(session_, &mechanism, key_.handle()));
/*
// TODO: reinstate
CK_MECHANISM mechanism2 = {info_.mode, NULL_PTR, (CK_ULONG)info_.blocksize};
EXPECT_CKR(CKR_MECHANISM_PARAM_INVALID,
g_fns->C_DecryptInit(session_, &mechanism2, key_.handle()));
*/
}
TEST_P(SecretKeyTest, DecryptUpdateErrors) {
// First encrypt the data.
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Variety of bad arguments to C_DecryptUpdate. Each error terminates the
// operation and so need re-initialization.
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_DecryptUpdate(session_,
ciphertext, ciphertext_len,
NULL_PTR, NULL_PTR));
CK_BYTE plaintext[1024];
CK_ULONG plaintext_len = sizeof(plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_DecryptUpdate(INVALID_SESSION_HANDLE,
ciphertext, ciphertext_len,
plaintext, &plaintext_len));
plaintext_len = sizeof(plaintext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_DecryptUpdate(session_,
NULL_PTR, info_.blocksize,
plaintext, &plaintext_len));
}
TEST_P(SecretKeyTest, EncryptFinalImmediate) {
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
// It is valid to call EncryptFinal without any intervening EncryptUpdate operations.
EXPECT_CKR_OK(g_fns->C_EncryptFinal(session_, ciphertext, &ciphertext_len));
EXPECT_EQ(0, ciphertext_len);
}
TEST_P(SecretKeyTest, EncryptFinalErrors1) {
// Variety of bad arguments to C_EncryptFinal. Each error terminates the
// operation and so need re-initialization.
CK_BYTE ciphertext[1024];
CK_BYTE_PTR output = ciphertext;
CK_ULONG output_len = sizeof(ciphertext) - (output - ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_EncryptUpdate(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
output, &output_len));
output += output_len;
output_len = sizeof(ciphertext) - (output - ciphertext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_EncryptFinal(session_, NULL_PTR, NULL_PTR));
}
TEST_P(SecretKeyTest, EncryptFinalErrors2) {
CK_BYTE ciphertext[1024];
CK_BYTE_PTR output = ciphertext;
CK_ULONG output_len = sizeof(ciphertext) - (output - ciphertext);
EXPECT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_EncryptUpdate(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
output, &output_len));
output += output_len;
output_len = sizeof(ciphertext) - (output - ciphertext);
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_EncryptFinal(INVALID_SESSION_HANDLE,
output, &output_len));
// Try to encrypt an incomplete block.
unique_ptr<CK_BYTE, freer> partial(randmalloc(info_.blocksize - 1));
output_len = sizeof(ciphertext) - (output - ciphertext);
CK_RV rv = g_fns->C_EncryptUpdate(session_,
partial.get(), info_.blocksize - 1,
output, &output_len);
if (rv == CKR_OK) {
output += output_len;
output_len = sizeof(ciphertext) - (output - ciphertext);
rv = g_fns->C_EncryptFinal(session_, output, &output_len);
EXPECT_TRUE(rv == CKR_DATA_LEN_RANGE || rv == CKR_FUNCTION_FAILED) << " rv=" << CK_RV_(rv);
} else {
EXPECT_TRUE(rv == CKR_DATA_LEN_RANGE || rv == CKR_FUNCTION_FAILED) << " rv=" << CK_RV_(rv);
}
}
TEST_P(SecretKeyTest, DecryptFinalErrors1) {
// First encrypt the data.
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
// Variety of bad arguments to C_DecryptFinal. Each error terminates the
// operation and so need re-initialization.
CK_BYTE plaintext[1024];
CK_BYTE_PTR output = plaintext;
CK_ULONG output_len = sizeof(ciphertext) - (output - plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_DecryptUpdate(session_,
ciphertext, ciphertext_len,
output, &output_len));
output += output_len;
output_len = sizeof(ciphertext) - (output - plaintext);
EXPECT_CKR(CKR_ARGUMENTS_BAD,
g_fns->C_DecryptFinal(session_, NULL_PTR, NULL_PTR));
}
TEST_P(SecretKeyTest, DecryptFinalErrors2) {
// First encrypt the data.
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism_, key_.handle()));
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
plaintext_.get(), kNumBlocks * info_.blocksize,
ciphertext, &ciphertext_len));
CK_BYTE plaintext[1024];
CK_BYTE_PTR output = plaintext;
CK_ULONG output_len = sizeof(ciphertext) - (output - plaintext);
EXPECT_CKR_OK(g_fns->C_DecryptInit(session_, &mechanism_, key_.handle()));
EXPECT_CKR_OK(g_fns->C_DecryptUpdate(session_,
ciphertext, ciphertext_len,
output, &output_len));
output += output_len;
output_len = sizeof(ciphertext) - (output - plaintext);
EXPECT_CKR(CKR_SESSION_HANDLE_INVALID,
g_fns->C_DecryptFinal(INVALID_SESSION_HANDLE,
output, &output_len));
}
INSTANTIATE_TEST_SUITE_P(Ciphers, SecretKeyTest,
::testing::Values("DES-ECB",
"DES-CBC",
"3DES-ECB",
"3DES-CBC",
"AES-ECB",
"AES-CBC"));
TEST_F(ReadOnlySessionTest, CreateSecretKeyAttributes) {
string key = hex_decode("");
CK_OBJECT_CLASS key_class = CKO_SECRET_KEY;
CK_KEY_TYPE key_type = CKK_DES;
vector<CK_ATTRIBUTE> attrs = {
{CKA_PRIVATE, (CK_VOID_PTR)&g_ck_false, sizeof(CK_BBOOL)},
{CKA_LABEL, (CK_VOID_PTR)g_label, g_label_len},
{CKA_ENCRYPT, (CK_VOID_PTR)&g_ck_true, sizeof(CK_BBOOL)},
{CKA_DECRYPT, (CK_VOID_PTR)&g_ck_true, sizeof(CK_BBOOL)},
{CKA_CLASS, &key_class, sizeof(key_class)},
{CKA_KEY_TYPE, (CK_VOID_PTR)&key_type, sizeof(key_type)},
{CKA_VALUE, (CK_VOID_PTR)key.data(), (CK_ULONG)key.size()},
};
CK_OBJECT_HANDLE key_object;
ASSERT_CKR_OK(g_fns->C_CreateObject(session_, attrs.data(), attrs.size(), &key_object));
// On creating a secret key object from external data, both
// CKA_ALWAYS_SENSITIVE and CKA_NEVER_EXTRACTABLE should be false (as the
// key's content has existed outside of the token).
CK_BBOOL value;
CK_ATTRIBUTE get_attr1 = {CKA_ALWAYS_SENSITIVE, &value, sizeof(value)};
EXPECT_CKR_OK(g_fns->C_GetAttributeValue(session_, key_object, &get_attr1, 1));
EXPECT_EQ(CK_FALSE, value);
CK_ATTRIBUTE get_attr2 = {CKA_NEVER_EXTRACTABLE, &value, sizeof(value)};
EXPECT_CKR_OK(g_fns->C_GetAttributeValue(session_, key_object, &get_attr2, 1));
EXPECT_EQ(CK_FALSE, value);
// Generated key is not local, and has no keygen mechanism.
CK_ATTRIBUTE get_attr3 = {CKA_LOCAL, &value, sizeof(value)};
EXPECT_CKR_OK(g_fns->C_GetAttributeValue(session_, key_object, &get_attr3, 1));
EXPECT_EQ(CK_FALSE, value);
CK_MECHANISM_TYPE mech;
CK_ATTRIBUTE get_attr4 = {CKA_KEY_GEN_MECHANISM, &mech, sizeof(mech)};
EXPECT_CKR_OK(g_fns->C_GetAttributeValue(session_, key_object, &get_attr4, 1));
EXPECT_EQ(CK_UNAVAILABLE_INFORMATION, mech);
ASSERT_CKR_OK(g_fns->C_DestroyObject(session_, key_object));
}
TEST_F(ReadOnlySessionTest, SecretKeyTestVectors) {
for (const auto& kv : kTestVectors) {
vector<TestData> testcases = kTestVectors[kv.first];
CipherInfo info = kCipherInfo[kv.first];
for (const TestData& testcase : kv.second) {
if (g_verbose) {
cout << "KEY: " << testcase.key << endl;
if (info.has_iv) cout << "IV: " << testcase.iv << endl;
cout << "PT: " << testcase.plaintext << endl;
cout << "CT: " << testcase.ciphertext << endl;
}
string key = hex_decode(testcase.key);
CK_OBJECT_CLASS key_class = CKO_SECRET_KEY;
CK_KEY_TYPE key_type = info.keytype;
vector<CK_ATTRIBUTE> attrs = {
{CKA_PRIVATE, (CK_VOID_PTR)&g_ck_false, sizeof(CK_BBOOL)},
{CKA_LABEL, (CK_VOID_PTR)g_label, g_label_len},
{CKA_ENCRYPT, (CK_VOID_PTR)&g_ck_true, sizeof(CK_BBOOL)},
{CKA_DECRYPT, (CK_VOID_PTR)&g_ck_true, sizeof(CK_BBOOL)},
{CKA_CLASS, &key_class, sizeof(key_class)},
{CKA_KEY_TYPE, (CK_VOID_PTR)&key_type, sizeof(key_type)},
{CKA_VALUE, (CK_VOID_PTR)key.data(), (CK_ULONG)key.size()},
};
CK_OBJECT_HANDLE key_object;
ASSERT_CKR_OK(g_fns->C_CreateObject(session_, attrs.data(), attrs.size(), &key_object));
string iv = hex_decode(testcase.iv);
CK_MECHANISM mechanism = {info.mode,
(info.has_iv ? (CK_BYTE_PTR)iv.data() : NULL_PTR),
(info.has_iv ? (CK_ULONG)info.blocksize : 0)};
ASSERT_CKR_OK(g_fns->C_EncryptInit(session_, &mechanism, key_object));
string plaintext = hex_decode(testcase.plaintext);
CK_BYTE ciphertext[1024];
CK_ULONG ciphertext_len = sizeof(ciphertext);
ASSERT_CKR_OK(g_fns->C_Encrypt(session_,
(CK_BYTE_PTR)plaintext.data(), plaintext.size(),
ciphertext, &ciphertext_len));
string expected_ciphertext = hex_decode(testcase.ciphertext);
EXPECT_EQ(expected_ciphertext.size(), ciphertext_len);
EXPECT_EQ(0, memcmp(expected_ciphertext.data(),
ciphertext,
expected_ciphertext.size()));
}
}
}
} // namespace test
} // namespace pkcs11