-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathencode.go
1422 lines (1295 loc) · 34.6 KB
/
encode.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 Jean Niklas L'orange. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edn
import (
"bytes"
"encoding/base64"
"io"
"math"
"math/big"
"reflect"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unicode"
"unicode/utf8"
)
// Marshal returns the EDN encoding of v.
//
// Marshal traverses the value v recursively.
// If an encountered value implements the Marshaler interface
// and is not a nil pointer, Marshal calls its MarshalEDN method
// to produce EDN. The nil pointer exception is not strictly necessary
// but mimics a similar, necessary exception in the behavior of
// UnmarshalEDN.
//
// Otherwise, Marshal uses the following type-dependent default encodings:
//
// Boolean values encode as EDN booleans.
//
// Integers encode as EDN integers.
//
// Floating point values encode as EDN floats.
//
// String values encode as EDN strings coerced to valid UTF-8,
// replacing invalid bytes with the Unicode replacement rune.
// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
// to keep some browsers from misinterpreting EDN output as HTML.
// Ampersand "&" is also escaped to "\u0026" for the same reason.
//
// Array and slice values encode as EDN arrays, except that
// []byte encodes as a base64-encoded string, and a nil slice
// encodes as the nil EDN value.
//
// Struct values encode as EDN maps. Each exported struct field
// becomes a member of the map unless
// - the field's tag is "-", or
// - the field is empty and its tag specifies the "omitempty" option.
// The empty values are false, 0, any
// nil pointer or interface value, and any array, slice, map, or string of
// length zero. The map's default key is the struct field name as a keyword,
// but can be specified in the struct field's tag value. The "edn" key in
// the struct field's tag value is the key name, followed by an optional comma
// and options. Examples:
//
// // Field is ignored by this package.
// Field int `edn:"-"`
//
// // Field appears in EDN as key :my-name.
// Field int `edn:"myName"`
//
// // Field appears in EDN as key :my-name and
// // the field is omitted from the object if its value is empty,
// // as defined above.
// Field int `edn:"my-name,omitempty"`
//
// // Field appears in EDN as key :field (the default), but
// // the field is skipped if empty.
// // Note the leading comma.
// Field int `edn:",omitempty"`
//
// The "str", "key" and "sym" options signals that a field name should be
// written as a string, keyword or symbol, respectively. If none are specified,
// then the default behaviour is to emit them as keywords. Examples:
//
// // Default behaviour: field name will be encoded as :foo
// Foo int
//
// // Encode Foo as string with name "string-foo"
// Foo int `edn:"string-foo,str"`
//
// // Encode Foo as symbol with name sym-foo
// Foo int `edn:"sym-foo,sym"`
//
// Anonymous struct fields are usually marshaled as if their inner exported fields
// were fields in the outer struct, subject to the usual Go visibility rules amended
// as described in the next paragraph.
// An anonymous struct field with a name given in its EDN tag is treated as
// having that name, rather than being anonymous.
// An anonymous struct field of interface type is treated the same as having
// that type as its name, rather than being anonymous.
//
// The Go visibility rules for struct fields are amended for EDN when
// deciding which field to marshal or unmarshal. If there are
// multiple fields at the same level, and that level is the least
// nested (and would therefore be the nesting level selected by the
// usual Go rules), the following extra rules apply:
//
// 1) Of those fields, if any are EDN-tagged, only tagged fields are considered,
// even if there are multiple untagged fields that would otherwise conflict.
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
//
// To force ignoring of an anonymous struct field in both current and earlier
// versions, give the field a EDN tag of "-".
//
// Map values usually encode as EDN maps. There are no limitations on the keys
// or values -- as long as they can be encoded to EDN, anything goes. Map values
// will be encoded as sets if their value type is either a bool or a struct with
// no fields.
//
// If you want to ensure that a value is encoded as a map, you can specify that
// as follows:
//
// // Encode Foo as a map, instead of the default set
// Foo map[int]bool `edn:",map"`
//
// Arrays and slices are encoded as vectors by default. As with maps and sets,
// you can specify that a field should be encoded as a list instead, by using
// the option "list":
//
// // Encode Foo as a list, instead of the default vector
// Foo []int `edn:",list"`
//
// Pointer values encode as the value pointed to.
// A nil pointer encodes as the nil EDN object.
//
// Interface values encode as the value contained in the interface.
// A nil interface value encodes as the nil EDN value.
//
// Channel, complex, and function values cannot be encoded in EDN.
// Attempting to encode such a value causes Marshal to return
// an UnsupportedTypeError.
//
// EDN cannot represent cyclic data structures and Marshal does not
// handle them. Passing cyclic structures to Marshal will result in
// an infinite recursion.
//
func Marshal(v interface{}) ([]byte, error) {
e := &encodeState{}
err := e.marshal(v)
if err != nil {
return nil, err
}
return e.Bytes(), nil
}
// MarshalIndent is like Marshal but applies Indent to format the output.
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
b, err := Marshal(v)
if err != nil {
return nil, err
}
var buf bytes.Buffer
err = Indent(&buf, b, prefix, indent)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// MarshalPPrint is like Marshal but applies PPrint to format the output.
func MarshalPPrint(v interface{}, opts *PPrintOpts) ([]byte, error) {
b, err := Marshal(v)
if err != nil {
return nil, err
}
var buf bytes.Buffer
err = PPrint(&buf, b, opts)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// An Encoder writes EDN values to an output stream.
type Encoder struct {
writer io.Writer
ec encodeState
}
// NewEncoder returns a new encoder that writes to w.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
writer: w,
ec: encodeState{},
}
}
// Encode writes the EDN encoding of v to the stream, followed by a newline
// character.
//
// See the documentation for Marshal for details about the conversion of Go
// values to EDN.
func (e *Encoder) Encode(v interface{}) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
e.ec.Reset()
_, err = e.writer.Write(b)
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// EncodeIndent writes the indented EDN encoding of v to the stream, followed by
// a newline character.
//
// See the documentation for MarshalIndent for details about the conversion of
// Go values to EDN.
func (e *Encoder) EncodeIndent(v interface{}, prefix, indent string) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
var buf bytes.Buffer
err = Indent(&buf, b, prefix, indent)
e.ec.Reset()
if err != nil {
return err
}
_, err = e.writer.Write(buf.Bytes())
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// EncodePPrint writes the pretty-printed EDN encoding of v to the stream,
// followed by a newline character.
//
// See the documentation for MarshalPPrint for details about the conversion of
// Go values to EDN.
func (e *Encoder) EncodePPrint(v interface{}, opts *PPrintOpts) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
var buf bytes.Buffer
err = PPrint(&buf, b, opts)
e.ec.Reset()
if err != nil {
return err
}
_, err = e.writer.Write(buf.Bytes())
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// Marshaler is the interface implemented by objects that
// can marshal themselves into valid EDN.
type Marshaler interface {
MarshalEDN() ([]byte, error)
}
// An UnsupportedTypeError is returned by Marshal when attempting
// to encode an unsupported value type.
type UnsupportedTypeError struct {
Type reflect.Type
}
func (e *UnsupportedTypeError) Error() string {
return "edn: unsupported type: " + e.Type.String()
}
// An UnsupportedValueError is returned by Marshal when attempting to encode an
// unsupported value. Examples include the float values NaN and Infinity.
type UnsupportedValueError struct {
Value reflect.Value
Str string
}
func (e *UnsupportedValueError) Error() string {
return "edn: unsupported value: " + e.Str
}
// A MarshalerError is returned by Marshal when encoding a type with a
// MarshalEDN function fails.
type MarshalerError struct {
Type reflect.Type
Err error
}
func (e *MarshalerError) Error() string {
return "edn: error calling MarshalEDN for type " + e.Type.String() + ": " + e.Err.Error()
}
var hex = "0123456789abcdef"
// An encodeState encodes EDN into a bytes.Buffer.
type encodeState struct {
bytes.Buffer // accumulated output
scratch [64]byte
needsDelim bool
mc *MathContext
}
// mathContext returns the math context to use. If not set in the encodeState,
// the global math context is used.
func (e *encodeState) mathContext() *MathContext {
if e.mc != nil {
return e.mc
}
return &GlobalMathContext
}
var encodeStatePool sync.Pool
func newEncodeState() *encodeState {
if v := encodeStatePool.Get(); v != nil {
e := v.(*encodeState)
e.Reset()
return e
}
return new(encodeState)
}
func (e *encodeState) marshal(v interface{}) (err error) {
defer func() {
if r := recover(); r != nil {
if _, ok := r.(runtime.Error); ok {
panic(r)
}
if s, ok := r.(string); ok {
panic(s)
}
err = r.(error)
}
}()
e.reflectValue(reflect.ValueOf(v))
return nil
}
func (e *encodeState) error(err error) {
panic(err)
}
func isEmptyValue(v reflect.Value) bool {
switch v.Kind() {
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
return v.Len() == 0
case reflect.Bool:
return !v.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Interface, reflect.Ptr:
return v.IsNil()
}
return false
}
func (e *encodeState) reflectValue(v reflect.Value) {
valueEncoder(v)(e, v)
}
type encoderFunc func(e *encodeState, v reflect.Value)
type typeAndTag struct {
t reflect.Type
ctype tagType
}
var encoderCache struct {
sync.RWMutex
m map[typeAndTag]encoderFunc
}
func valueEncoder(v reflect.Value) encoderFunc {
if !v.IsValid() {
return invalidValueEncoder
}
return typeEncoder(v.Type(), tagUndefined)
}
func typeEncoder(t reflect.Type, tagType tagType) encoderFunc {
tac := typeAndTag{t, tagType}
encoderCache.RLock()
f := encoderCache.m[tac]
encoderCache.RUnlock()
if f != nil {
return f
}
couldUseJSON := readCanUseJSONTag()
// To deal with recursive types, populate the map with an
// indirect func before we build it. This type waits on the
// real func (f) to be ready and then calls it. This indirect
// func is only used for recursive types.
encoderCache.Lock()
if encoderCache.m == nil {
encoderCache.m = make(map[typeAndTag]encoderFunc)
}
var wg sync.WaitGroup
wg.Add(1)
encoderCache.m[tac] = func(e *encodeState, v reflect.Value) {
wg.Wait()
f(e, v)
}
encoderCache.Unlock()
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = newTypeEncoder(t, tagType, true)
wg.Done()
encoderCache.Lock()
if couldUseJSON != readCanUseJSONTag() {
// cache has been invalidated, unlock and retry recursively.
encoderCache.Unlock()
return typeEncoder(t, tagType)
}
encoderCache.m[tac] = f
encoderCache.Unlock()
return f
}
var (
marshalerType = reflect.TypeOf(new(Marshaler)).Elem()
instType = reflect.TypeOf((*time.Time)(nil)).Elem()
)
// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, tagType tagType, allowAddr bool) encoderFunc {
if t.Implements(marshalerType) {
return marshalerEncoder
}
if t.Kind() != reflect.Ptr && allowAddr {
if reflect.PtrTo(t).Implements(marshalerType) {
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, tagType, false))
}
}
// Handle specific types first
switch t {
case bigIntType:
return bigIntEncoder
case bigFloatType:
return bigFloatEncoder
case instType:
return instEncoder
}
switch t.Kind() {
case reflect.Bool:
return boolEncoder
case reflect.Int32:
if tagType == tagRune {
return runeEncoder
}
return intEncoder
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int64:
return intEncoder
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintEncoder
case reflect.Float32:
return float32Encoder
case reflect.Float64:
return float64Encoder
case reflect.String:
return stringEncoder
case reflect.Interface:
return interfaceEncoder
case reflect.Struct:
return newStructEncoder(t, tagType)
case reflect.Map:
return newMapEncoder(t, tagType)
case reflect.Slice:
return newSliceEncoder(t, tagType)
case reflect.Array:
return newArrayEncoder(t, tagType)
case reflect.Ptr:
return newPtrEncoder(t, tagType)
default:
return unsupportedTypeEncoder
}
}
func invalidValueEncoder(e *encodeState, v reflect.Value) {
e.writeNil()
}
func marshalerEncoder(e *encodeState, v reflect.Value) {
if v.Kind() == reflect.Ptr && v.IsNil() {
e.writeNil()
return
}
m := v.Interface().(Marshaler)
b, err := m.MarshalEDN()
if err == nil {
// copy EDN into buffer, checking (token) validity.
e.ensureDelim()
err = Compact(&e.Buffer, b)
e.needsDelim = true
}
if err != nil {
e.error(&MarshalerError{v.Type(), err})
}
}
func addrMarshalerEncoder(e *encodeState, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.writeNil()
return
}
m := va.Interface().(Marshaler)
b, err := m.MarshalEDN()
if err == nil {
// copy EDN into buffer, checking (token) validity.
e.ensureDelim()
err = Compact(&e.Buffer, b)
e.needsDelim = true
}
if err != nil {
e.error(&MarshalerError{v.Type(), err})
}
}
func boolEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
if v.Bool() {
e.WriteString("true")
} else {
e.WriteString("false")
}
e.needsDelim = true
}
func runeEncoder(e *encodeState, v reflect.Value) {
encodeRune(&e.Buffer, rune(v.Int()))
e.needsDelim = true
}
func intEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
e.Write(b)
e.needsDelim = true
}
func uintEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
e.Write(b)
e.needsDelim = true
}
func bigIntEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
bi := v.Interface().(big.Int)
b := []byte(bi.String())
e.Write(b)
e.WriteByte('N')
e.needsDelim = true
}
func bigFloatEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
bf := new(big.Float)
mc := e.mathContext()
val := v.Interface().(big.Float)
bf.Set(&val).SetMode(mc.Mode)
b := []byte(bf.Text('g', int(mc.Precision)))
e.Write(b)
e.WriteByte('M')
e.needsDelim = true
}
func instEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
t := v.Interface().(time.Time)
e.Write([]byte(t.Format(`#inst"` + time.RFC3339Nano + `"`)))
}
type floatEncoder int // number of bits
func (bits floatEncoder) encode(e *encodeState, v reflect.Value) {
f := v.Float()
if math.IsInf(f, 0) || math.IsNaN(f) {
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
}
e.ensureDelim()
b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
if ix := bytes.IndexAny(b, ".eE"); ix < 0 {
b = append(b, '.', '0')
}
e.Write(b)
e.needsDelim = true
}
var (
float32Encoder = (floatEncoder(32)).encode
float64Encoder = (floatEncoder(64)).encode
)
func stringEncoder(e *encodeState, v reflect.Value) {
e.string(v.String())
}
func interfaceEncoder(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.reflectValue(v.Elem())
}
func unsupportedTypeEncoder(e *encodeState, v reflect.Value) {
e.error(&UnsupportedTypeError{v.Type()})
}
type structEncoder struct {
fields []field
fieldEncs []encoderFunc
}
func (se *structEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('{')
e.needsDelim = false
for i, f := range se.fields {
fv := fieldByIndex(v, f.index)
if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
continue
}
switch f.fnameType {
case emitKey:
e.ensureDelim()
e.WriteByte(':')
e.WriteString(f.name)
e.needsDelim = true
case emitString:
e.string(f.name)
e.needsDelim = false
case emitSym:
e.ensureDelim()
e.WriteString(f.name)
e.needsDelim = true
}
se.fieldEncs[i](e, fv)
}
e.WriteByte('}')
e.needsDelim = false
}
func newStructEncoder(t reflect.Type, tagType tagType) encoderFunc {
fields := cachedTypeFields(t)
se := &structEncoder{
fields: fields,
fieldEncs: make([]encoderFunc, len(fields)),
}
for i, f := range fields {
se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index), f.tagType)
}
return se.encode
}
type mapEncoder struct {
keyEnc encoderFunc
elemEnc encoderFunc
}
func (me *mapEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.WriteByte('{')
e.needsDelim = false
mk := v.MapKeys()
// NB: We don't get deterministic results here, because we don't iterate in a
// determinstic way.
for _, k := range mk {
if e.needsDelim { // bypass conventional whitespace to use commas instead
e.WriteByte(',')
e.needsDelim = false
}
me.keyEnc(e, k)
me.elemEnc(e, v.MapIndex(k))
}
e.WriteByte('}')
e.needsDelim = false
}
type mapSetEncoder struct {
keyEnc encoderFunc
}
func (me *mapSetEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.ensureDelim()
e.WriteByte('#')
e.WriteByte('{')
e.needsDelim = false
mk := v.MapKeys()
// not deterministic this one either.
for _, k := range mk {
mval := v.MapIndex(k)
if mval.Kind() != reflect.Bool || mval.Bool() {
me.keyEnc(e, k)
}
}
e.WriteByte('}')
e.needsDelim = false
}
func newMapEncoder(t reflect.Type, tagType tagType) encoderFunc {
canBeSet := false
switch t.Elem().Kind() {
case reflect.Struct:
if t.Elem().NumField() == 0 {
canBeSet = true
}
case reflect.Bool:
canBeSet = true
}
if (tagType == tagUndefined || tagType == tagSet) && canBeSet {
me := &mapSetEncoder{typeEncoder(t.Key(), tagUndefined)}
return me.encode
}
if tagType != tagUndefined && tagType != tagMap {
return unsupportedTypeEncoder
}
me := &mapEncoder{
typeEncoder(t.Key(), tagUndefined),
typeEncoder(t.Elem(), tagUndefined),
}
return me.encode
}
func encodeByteSlice(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
s := v.Bytes()
e.ensureDelim()
e.WriteString(`#base64"`)
if len(s) < 1024 {
// for small buffers, using Encode directly is much faster.
dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
base64.StdEncoding.Encode(dst, s)
e.Write(dst)
} else {
// for large buffers, avoid unnecessary extra temporary
// buffer space.
enc := base64.NewEncoder(base64.StdEncoding, e)
enc.Write(s)
enc.Close()
}
e.WriteByte('"')
}
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
type sliceEncoder struct {
arrayEnc encoderFunc
}
func (e *encodeState) ensureDelim() {
if e.needsDelim {
e.WriteByte(' ')
}
}
func (e *encodeState) writeNil() {
e.ensureDelim()
e.WriteString("nil")
e.needsDelim = true
}
func (se *sliceEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
se.arrayEnc(e, v)
}
func newSliceEncoder(t reflect.Type, tagType tagType) encoderFunc {
// Byte slices get special treatment; arrays don't.
if t.Elem().Kind() == reflect.Uint8 {
return encodeByteSlice
}
enc := &sliceEncoder{newArrayEncoder(t, tagType)}
return enc.encode
}
type arrayEncoder struct {
elemEnc encoderFunc
}
func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('[')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte(']')
e.needsDelim = false
}
type listArrayEncoder struct {
elemEnc encoderFunc
}
func (ae *listArrayEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('(')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte(')')
e.needsDelim = false
}
type setArrayEncoder struct {
elemEnc encoderFunc
}
func (ae *setArrayEncoder) encode(e *encodeState, v reflect.Value) {
e.ensureDelim()
e.WriteByte('#')
e.WriteByte('{')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte('}')
e.needsDelim = false
}
func newArrayEncoder(t reflect.Type, tagType tagType) encoderFunc {
switch tagType {
case tagList:
enc := &listArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
case tagSet:
enc := &setArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
default:
enc := &arrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
}
}
type ptrEncoder struct {
elemEnc encoderFunc
}
func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
pe.elemEnc(e, v.Elem())
}
func newPtrEncoder(t reflect.Type, tagType tagType) encoderFunc {
enc := &ptrEncoder{typeEncoder(t.Elem(), tagType)}
return enc.encode
}
type condAddrEncoder struct {
canAddrEnc, elseEnc encoderFunc
}
func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value) {
if v.CanAddr() {
ce.canAddrEnc(e, v)
} else {
ce.elseEnc(e, v)
}
}
// newCondAddrEncoder returns an encoder that checks whether its value
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
return enc.encode
}
// NOTE: keep in sync with stringBytes below.
func (e *encodeState) string(s string) (int, error) {
len0 := e.Len()
e.WriteByte('"')
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
i++
continue
}
if start < i {
e.WriteString(s[start:i])
}
switch b {
case '\\', '"':
e.WriteByte('\\')
e.WriteByte(b)
case '\n':
e.WriteByte('\\')
e.WriteByte('n')
case '\r':
e.WriteByte('\\')
e.WriteByte('r')
case '\t':
e.WriteByte('\\')
e.WriteByte('t')
default:
// This encodes bytes < 0x20 except for \n and \r,
// as well as <, > and &. The latter are escaped because they
// can lead to security holes when user-controlled strings
// are rendered into EDN and served to some browsers.
e.WriteString(`\u00`)
e.WriteByte(hex[b>>4])
e.WriteByte(hex[b&0xF])
}
i++
start = i
continue
}
c, size := utf8.DecodeRuneInString(s[i:])
if c == utf8.RuneError && size == 1 {
if start < i {
e.WriteString(s[start:i])
}
e.WriteString(`\ufffd`)
i += size
start = i
continue
}
i += size
}
if start < len(s) {
e.WriteString(s[start:])
}
e.WriteByte('"')
e.needsDelim = false
return e.Len() - len0, nil
}
// NOTE: keep in sync with string above.
func (e *encodeState) stringBytes(s []byte) (int, error) {
len0 := e.Len()
e.WriteByte('"')
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
i++
continue
}
if start < i {
e.Write(s[start:i])
}
switch b {
case '\\', '"':
e.WriteByte('\\')
e.WriteByte(b)
case '\n':
e.WriteByte('\\')
e.WriteByte('n')
case '\r':
e.WriteByte('\\')