-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpriority.py
189 lines (177 loc) · 4.29 KB
/
priority.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import helpers as h
import random
import heapq as hq
import oxdict as od
numChildren = 10
strikes = 7#10
class Niche:
def __init__(self,v, node):
self.verb = v
self.intrans = od.checkVerb(v)
self.isDead = not self.intrans
self.heap = []
self.stale = 0
self.bestsc = node.score
self.bestch = node
self.push(node)
def checkBest(self,curr):
if curr.score > self.bestsc:
self.bestsc = curr.score
self.bestch = curr
self.stale = 0
#print "NEW BEST:",self.bestch.s,self.bestch.score
return True
return False
def push(self,node):
if self.stale > strikes or not self.intrans:
return
if not self.heap:
#if self.isDead:
# print self.verb, "REANIMATED"
self.isDead = False
hq.heappush(self.heap,(-node.score,node))
def step(self):
if self.isDead:
return []
if not self.heap:
self.isDead = True
#print self.verb, "DIED: heap empty"
return []
curr = hq.heappop(self.heap)[1]
#print curr.s,curr.score
if not self.checkBest(curr):
self.stale += 1
if self.stale > strikes:
self.isDead = True
#print self.verb, "DIED: struck out"
return []
childs = []
for i in xrange(numChildren):
newch = curr.getChild()
if newch is not None:
childs.append(newch)
return childs
'''
if not childs:
return []
raw = [" ".join(c.words) for c in childs]
scores = self.scoref(raw)
ret = []
for i,child in enumerate(childs):
child.score = scores[i]
if h.getV(child.s) != self.verb:
ret.append(child)
else:
hq.heappush(self.heap,(-child.score,child))
return ret
'''
class Settings:
#rf is function that takes a "locks" list (see "formats" functions in micro.py)
#canR is list of indices that can be regenerated
def __init__(self,rf,canR):
self.regen = rf
self.canRegen = canR
class Node:
#s is string (artifact)
#sett is Settings object
def __init__(self,s,sett):
self.sett = sett
self.s = s
self.words = h.strip(s).split()
self.score = None#sett.calcScore
#print "--Created node [",s,"]",self.score
def getChild(self):
i = random.choice(self.sett.canRegen)
lock = self.words[:]
lock[i] = None
news = self.sett.regen(lock)
if not news:
return None
node = Node(news,self.sett)
if len(set(node.words)) != len(node.words) or node.s == self.s: #duplicate or didn't change
return None
return node
def best(s,regenf,canRegen,scoref):
niches = {}
verb = h.getV(s)
root = Node(s,Settings(regenf,canRegen))
root.score = scoref([s])[0]
ni = Niche(verb,root)
niches[verb] = ni
while True:
#print "--------------------------------"
children = []
allDead = True
for k in niches:
n = niches[k]
if not n.isDead:
allDead = False
children += n.step()
if allDead and not children:
break
if not children:
continue
raw = [" ".join(c.words) for c in children]
#speed up by preventing generation of stories with verbs that match stale > strikes or intrans niches!
scores = scoref(raw)
for i,child in enumerate(children):
child.score = scores[i]
v = h.getV(child.s)
if v not in niches:
ni2 = Niche(v,child)
niches[v] = ni2
else:
niches[v].push(child)
choices = []
for v in niches:
n = niches[v]
if not n.intrans:
continue
print n.bestch.s,n.bestsc
choices.append((n.bestch,n.bestsc))
m = min([c[1] for c in choices])
if m >=0:
m = 0
i = h.weighted_choice(choices,-m)
best = choices[i][0]
return best.s,best.score
'''
heap = []
#s is initial artifact
#regenf,canRegen,scoref: see Settings __init__ (identical params)
def best(s,regenf,canRegen,scoref):
root = Node(s,Settings(regenf,canRegen))
root.score = scoref([s])[0]
hq.heappush(heap,(-root.score,root))
bestsc = root.score
bestch = root
count = 0
print "starting priority loop"
while True:
if not heap:
break
curr = hq.heappop(heap)[1]
print curr.s,curr.score
if curr.score > bestsc:
bestsc = curr.score
bestch = curr
count = 0
print "NEW BEST:",bestch.s,bestch.score
else:
count += 1
if count > strikes:
break
childs = []
for i in xrange(numChildren):
newch = curr.getChild()
if newch is not None:
childs.append(newch)
if not childs:
continue
raw = [" ".join(c.words) for c in childs]
scores = scoref(raw)
for i,child in enumerate(childs):
child.score = scores[i]
hq.heappush(heap,(-child.score,child))
return bestch.s,bestsc
'''