-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqg_gyre.py
151 lines (118 loc) · 4.37 KB
/
qg_gyre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Insert nice comments
"""
from firedrake import *
import sys
Lx = 4.e6
Ly = 4.e6
n0 = 100 # Spatial resolution
mesh = RectangleMesh(n0, n0, Lx, Ly, quadrilateral=True, reorder=None)
Vdg = FunctionSpace(mesh,"DG",1) # DG elements for Potential Vorticity (PV)
Vcg = FunctionSpace(mesh,"CG",1) # CG elements for Streamfunction
Vu = VectorFunctionSpace(mesh,"DG",1) # DG elements for velocity
psi0 = Function(Vcg, name="streamfunction") # Streamfunctions for different time steps
psi1 = Function(Vcg)
# Physical parameters
f0 = Constant(1.e-4)
H = Constant(500.)
g = Constant(9.81)
beta = Constant(2.e-11) # beta plane coefficient
F = Constant(f0*f0/g/H) # Rotational Froude number
Dt = 50000. # Time step
dt = Constant(Dt)
# Initial Conditions for PV
x = SpatialCoordinate(mesh)
q0 = Function(Vdg, name="pv").interpolate(Constant(0.0))
dq1 = Function(Vdg) # PV fields for different time steps
qh = Function(Vdg)
q1 = Function(Vdg)
# Set up PV inversion
psi = TrialFunction(Vcg) # Test function
phi = TestFunction(Vcg) # Trial function
# Build the weak form for the inversion
Apsi = (inner(grad(psi),grad(phi)) + F*psi*phi)*dx
Lpsi = -q1*phi*dx
# Impose Dirichlet Boundary Conditions on the streamfunction
bc1 = [DirichletBC(Vcg, 0., 1),
DirichletBC(Vcg, 0., 2),
DirichletBC(Vcg, 0., 3),
DirichletBC(Vcg, 0., 4)]
# Set up Elliptic inverter
psi_problem = LinearVariationalProblem(Apsi,Lpsi,psi0,bcs=bc1)
psi_solver = LinearVariationalSolver(psi_problem,
solver_parameters={
'ksp_type':'cg',
'pc_type':'sor'
})
# Make a gradperp operator
gradperp = lambda u: as_vector((-u.dx(1), u.dx(0)))
# Set up Strong Stability Preserving Runge Kutta 3 (SSPRK3) method
# Mesh-related functions
n = FacetNormal(mesh)
# Set up upwinding type method (??)
# ( dot(v, n) + |dot(v, n)| )/2.0
un = 0.5*(dot(gradperp(psi0), n) + abs(dot(gradperp(psi0), n)))
Vcg2 = VectorFunctionSpace(mesh, "CG", 2)
rho0 = Constant(1000.)
tau0 = Constant(0.2)
L = Constant(Ly)
tau_expr = as_vector([tau0*sin(pi*(x[1]-0.5*L)/L)/rho0/H, 0.0])
tau = Function(Vcg2, name='tau').interpolate(tau_expr)
# advection equation
q = TrialFunction(Vdg)
p = TestFunction(Vdg)
a_mass = p*q*dx
a_int = (dot(grad(p), -gradperp(psi0)*q) + beta*p*psi0.dx(0))*dx
a_flux = (dot(jump(p), un('+')*q('+') - un('-')*q('-')) )*dS
a_source = p*(-tau[0].dx(1))*dx
arhs = a_mass - dt*(a_int + a_flux - a_source)
bc2 = [DirichletBC(Vdg, 0., 3, method='geometric'),
DirichletBC(Vdg, 0., 4, method='geometric')]
q_problem = LinearVariationalProblem(a_mass, action(arhs,q1), dq1, bcs=bc2)
q_solver = LinearVariationalSolver(q_problem,
solver_parameters={
'ksp_type':'cg',
'pc_type':'sor'
})
# diffusion equation
nu = Constant(1.6e5)
mu = Constant(100.*n0/Ly)
def get_flux_form(dS, M):
fluxes = (-inner(2*avg(outer(q, n)), avg(grad(p)*M))
- inner(avg(grad(q)*M), 2*avg(outer(p, n)))
+ mu*inner(2*avg(outer(q, n)), 2*avg(outer(p, n)*M)))*dS
return fluxes
a = p*q*dx + dt*(dot(grad(p), grad(q)*nu)*dx + get_flux_form(dS, nu))
L = p*q*dx
diff_problem = LinearVariationalProblem(a, action(L, q0), q0, bcs=bc2)
diff_solver = LinearVariationalSolver(diff_problem)
outfile = File("outfile.pvd")
v = Function(Vu, name="velocity").project(gradperp(psi0))
courant_number = Function(Vdg, name="Courant number").project(dot(v,v)*Dt*n0*n0/(Lx*Ly))
outfile.write(q0, psi0, v, courant_number)
t = 0.
T = 200.*24.*60.*60.
dumpfreq = 36
tdump = 0
v0 = Function(Vu)
while(t < (T-Dt/2)):
q1.assign(q0)
psi_solver.solve()
q_solver.solve()
q1.assign(dq1)
psi_solver.solve()
q_solver.solve()
q1.assign(0.75*q0 + 0.25*dq1)
psi_solver.solve()
q_solver.solve()
q0.assign(q0/3 + 2*dq1/3)
diff_solver.solve()
# Store solutions to xml and pvd
t +=Dt
print t
tdump += 1
if(tdump==dumpfreq):
tdump -= dumpfreq
v.project(gradperp(psi0))
courant_number.project(dot(v,v)*Dt*n0*n0/(Lx*Ly))
outfile.write(q0, psi0, v, courant_number)