-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread.py
67 lines (56 loc) · 1.78 KB
/
read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python3
import csv
import pandas as ps
from pprint import pprint
from collections import OrderedDict
bad_val = 0
def convert(v):
v = v.strip()
if v == 'None' or v == '':
v = bad_val
elif '.' in v:
v = float(v)
else:
v = int(v)
return v
def read(includeNone=False):
with open('data.csv', newline='') as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
data = [row for row in reader]
# Works... but cleaner data is desired.
# pprint(pandas.DataFrame([row[1:] for row in data[1:]]))
data = [row[1:] for row in data[1:]]
headers = data[0]
common_headers = headers[1:9]
data = data[1:]
bps = []
subjects = []
statistics = {k : list() for k in common_headers}
continued = False
for row in data:
bp = int(row[0])
skipped = False
for i, (k, v) in enumerate(zip(headers[1:], row[1:])):
v = convert(v)
if i == 0:
if not includeNone and v == bad_val:
skipped = True
continue
bps.append(bp)
subjects.append('human')
if i == 8:
if not includeNone:
if v == bad_val:
skipped = True
continue
else:
skipped = False
bps.append(bp)
subjects.append('phaeaco')
if not skipped:
statistics[k].append(v)
#print(len(bps))
#print(len(subjects))
#print([(k, len(subl)) for k, subl in statistics.items()])
return ps.DataFrame(dict(**{'bongard problems' : bps,
'subjects' : subjects}, **statistics))