-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
654 lines (579 loc) · 21.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from collections import defaultdict, deque
import torch.distributed as dist
import time
import datetime
import os
import psutil
from typing import Dict
import wandb
import numpy
import random
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def reduce_across_processes(val):
if not is_dist_avail_and_initialized():
return torch.tensor(val)
t = torch.tensor(val, device="cuda")
dist.barrier()
dist.all_reduce(t)
return t
def get_model_parallel(model):
if isinstance(model, torch.nn.DataParallel) or isinstance(
model, torch.nn.parallel.DistributedDataParallel
):
return model.module
else:
return model
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
args.world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
args.gpu = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
args.dist_url = "tcp://%s:%s" % (
os.environ["MASTER_ADDR"],
os.environ["MASTER_PORT"],
)
os.environ["LOCAL_RANK"] = str(args.gpu)
os.environ["RANK"] = str(args.rank)
os.environ["WORLD_SIZE"] = str(args.world_size)
elif "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
if "WORLD_SIZE" in os.environ:
args.world_size = int(os.environ["WORLD_SIZE"])
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print(
"distributed init (rank {}): {}, gpu {}, world_size: {}".format(
args.rank, args.dist_url, args.gpu, args.world_size
),
flush=True,
)
torch.distributed.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
import socket
TIME_FORMAT_STR: str = "%b_%d_%H_%M_%S"
def trace_handler(prof: torch.profiler.profile):
# Prefix for file names.
host_name = socket.gethostname()
timestamp = datetime.now().strftime(TIME_FORMAT_STR)
file_prefix = f"{host_name}_{timestamp}"
# Construct the trace file.
prof.export_chrome_trace(f"{file_prefix}.json.gz")
# Construct the memory timeline file.
prof.export_memory_timeline(f"{file_prefix}.html", device="cuda")
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = reduce_across_processes([self.count, self.total])
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if self.count == 0:
return self.total / 1
else:
return self.total / self.count
@property
def max(self):
if self.count > 0:
return max(self.deque)
else:
return 0
@property
def value(self):
if self.count > 0:
return self.deque[-1]
else:
return 0
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value,
)
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(
f"'{type(self).__name__}' object has no attribute '{attr}'"
)
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max cuda mem: {memory:.0f}",
"ram_percentage: {ram_usage_percentage}",
"cpu_percentage: {cpu_usage_percentage}",
]
)
else:
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
ram_usage_percentage=psutil.virtual_memory().percent,
cpu_usage_percentage=psutil.cpu_percent(),
)
)
torch.cuda.reset_max_memory_allocated()
else:
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str}")
"""
Taken from nanoGPT implementation: https://github.com/karpathy/nanoGPT/blob/master/model.py
"""
def configure_optimizers(model, args):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in model.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{
"params": decay_params,
"weight_decay": args.weight_decay if args.weight_decay else 0.0,
},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
optimizer = torch.optim.AdamW(optim_groups, lr=args.lr)
return optimizer
def get_lr_scheduler(
optimizer: torch.optim.Optimizer,
training_iterations: int = 5,
lr_scheduler: str = "multisteplr",
lr_step_size: int = 8,
lr_gamma: float = 0.1,
lr_steps: list = [16, 22],
lr_warmup_percentage: int = 0,
lr_warmup_method: str = "linear",
lr_warmup_decay: float = 0.01,
):
lr_warmup_epochs = int(lr_warmup_percentage * training_iterations)
lr_scheduler = lr_scheduler.lower()
if lr_scheduler == "steplr":
main_lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=lr_step_size, gamma=lr_gamma
)
elif lr_scheduler == "cosineannealinglr":
main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=training_iterations - lr_warmup_epochs
)
elif lr_scheduler == "exponentiallr":
main_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=lr_gamma
)
elif lr_scheduler == "multisteplr":
main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=lr_steps, gamma=lr_gamma
)
else:
raise RuntimeError(
f"Invalid lr scheduler '{lr_scheduler}'. Only StepLR, CosineAnnealingLR, ExponentialLR and MultiStepLR "
"are supported."
)
if lr_warmup_epochs > 0:
if lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=lr_warmup_decay, total_iters=lr_warmup_epochs
)
elif lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=lr_warmup_decay, total_iters=lr_warmup_epochs
)
else:
raise RuntimeError(
f"Invalid warmup lr method '{lr_warmup_method}'. Only linear and constant are supported."
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_lr_scheduler, main_lr_scheduler],
milestones=[lr_warmup_epochs],
)
else:
lr_scheduler = main_lr_scheduler
return lr_scheduler
def save_model_and_random_states(
model,
optimizer,
lr_scheduler,
epoch,
idx,
no_wandb,
output_dir,
wandb_run,
source_masking_generator,
target_masking_generator,
scaler,
):
if is_main_process():
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"current_batch": idx + 1,
}
if not no_wandb:
checkpoint["wandb_id"] = wandb_run.id
torch.save(checkpoint, os.path.join(output_dir, f"latest.pth"))
checkpoint = {
"cpu_rng_state": torch.get_rng_state(),
"gpu_rng_state": torch.cuda.get_rng_state(),
"numpy_rng_state": numpy.random.get_state(),
"py_rng_state": random.getstate(),
"source_masking_generator": source_masking_generator.get_state(),
"target_masking_generator": target_masking_generator.get_state(),
"scaler": scaler.state_dict(),
}
torch.save(
checkpoint, os.path.join(output_dir, f"latest_generators_{get_rank()}.pth")
)
def save_model(
model,
optimizer,
lr_scheduler,
epoch,
idx,
no_wandb,
output_dir,
wandb_run,
cummulative_idx,
):
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"current_batch": idx + 1,
}
if not no_wandb:
checkpoint["wandb_id"] = wandb_run.id
torch.save(
checkpoint, os.path.join(output_dir, f"model_{epoch}_{cummulative_idx}.pth")
)
def add_training_data_to_metric_logger(
lr: float,
outputs: Dict,
metric_logger: MetricLogger,
):
metric_logger.update(loss=outputs["loss"].item())
metric_logger.update(lr=lr)
if "mlm_loss" in outputs:
metric_logger.update(mlm_loss=outputs["mlm_loss"].item())
if "src_mlm_loss" in outputs:
metric_logger.update(src_mlm_loss=outputs["src_mlm_loss"].item())
if "trg_mlm_loss" in outputs:
metric_logger.update(trg_mlm_loss=outputs["trg_mlm_loss"].item())
if "cls_loss" in outputs:
metric_logger.update(cls_loss=outputs["cls_loss"].item())
if "koleo_loss" in outputs:
metric_logger.update(koleo_loss=outputs["koleo_loss"].item())
def add_training_data_to_wandb(
lr: float,
outputs: Dict,
total_batch_size: int = None,
step: int = None,
):
wandb_log_dict = {
"loss": outputs["loss"].item(),
"lr": lr,
}
if "src_mlm_loss" in outputs:
wandb_log_dict["src_mlm_loss"] = outputs["src_mlm_loss"].item()
if "trg_mlm_loss" in outputs:
wandb_log_dict["trg_mlm_loss"] = outputs["trg_mlm_loss"].item()
if "cls_loss" in outputs:
wandb_log_dict["cls_loss"] = outputs["cls_loss"].item()
if "koleo_loss" in outputs:
wandb_log_dict["koleo_loss"] = outputs["koleo_loss"].item()
if (step is not None) and (total_batch_size is not None):
wandb.log(wandb_log_dict, step=step * total_batch_size)
else:
wandb.log(wandb_log_dict)
def add_testing_data_to_metric_logger(
outputs: Dict,
metric_logger: MetricLogger,
):
metric_logger.update(test_loss=outputs["loss"].item())
if "mlm_loss" in outputs:
metric_logger.update(test_mlm_loss=outputs["mlm_loss"].item())
if "src_mlm_loss" in outputs:
metric_logger.update(test_src_mlm_loss=outputs["src_mlm_loss"].item())
if "trg_mlm_loss" in outputs:
metric_logger.update(test_trg_mlm_loss=outputs["trg_mlm_loss"].item())
if "cls_loss" in outputs:
metric_logger.update(test_cls_loss=outputs["cls_loss"].item())
if "koleo_loss" in outputs:
metric_logger.update(test_koleo_loss=outputs["koleo_loss"].item())
# Bitext mining metrics
metric_logger.update(test_accuracy=outputs["accuracy"].item())
metric_logger.update(test_src_to_trg_accuracy=outputs["src_to_trg_accuracy"].item())
metric_logger.update(test_trg_to_src_accuracy=outputs["trg_to_src_accuracy"].item())
metric_logger.update(test_top3_accuracy=outputs["top3_accuracy"].item())
metric_logger.update(
test_src_to_trg_top3_accuracy=outputs["src_to_trg_top3_accuracy"].item()
)
metric_logger.update(
test_trg_to_src_top3_accuracy=outputs["trg_to_src_top3_accuracy"].item()
)
def add_reporting_metrics__data_to_metric_logger(
metric_logger: MetricLogger,
xsim_results: Dict,
):
metric_logger.update(**xsim_results)
xsim_average = torch.mean(torch.tensor([*xsim_results.values()]))
metric_logger.update(xsim_average=xsim_average.item())
def log_final_test_results(
header: str,
metric_logger: MetricLogger,
outputs: Dict,
xsim_results: Dict,
):
print(f"{header} Test Loss {metric_logger.test_loss.global_avg:.3f}")
if "mlm_loss" in outputs:
print(f"{header} test_mlm_loss {metric_logger.test_mlm_loss.global_avg:.3f}")
if "src_mlm_loss" in outputs:
print(
f"{header} test_src_mlm_loss {metric_logger.test_src_mlm_loss.global_avg:.3f}"
)
if "trg_mlm_loss" in outputs:
print(
f"{header} test_trg_mlm_loss {metric_logger.test_trg_mlm_loss.global_avg:.3f}"
)
if "cls_loss" in outputs:
print(f"{header} test_cls_loss {metric_logger.test_cls_loss.global_avg:.3f}")
if "koleo_loss" in outputs:
print(
f"{header} test_koleo_loss {metric_logger.test_koleo_loss.global_avg:.3f}"
)
# Bitext mining metrics
print(f"{header} test_accuracy {metric_logger.test_accuracy.global_avg:.5f}")
print(
f"{header} test_src_to_trg_accuracy {metric_logger.test_src_to_trg_accuracy.global_avg:.5f}"
)
print(
f"{header} test_trg_to_src_accuracy {metric_logger.test_trg_to_src_accuracy.global_avg:.5f}"
)
print(
f"{header} test_top3_accuracy {metric_logger.test_top3_accuracy.global_avg:.5f}"
)
print(
f"{header} test_src_to_trg_top3_accuracy {metric_logger.test_src_to_trg_top3_accuracy.global_avg:.5f}"
)
print(
f"{header} test_trg_to_src_top3_accuracy {metric_logger.test_trg_to_src_top3_accuracy.global_avg:.5f}"
)
for language in xsim_results.keys():
print(
f"{header} test_{language} {metric_logger.meters[language].global_avg:.5f}"
)
print(f"{header} test_xsim_average {metric_logger.xsim_average.global_avg:.5f}")
def log_final_test_results_to_wandb(
metric_logger: MetricLogger,
outputs: Dict,
xsim_results,
):
wandb_log_dict = {
"flores200/test_loss": metric_logger.test_loss.global_avg,
"flores200/test_accuracy": metric_logger.test_accuracy.global_avg,
"flores200/test_src_to_trg_accuracy": metric_logger.test_src_to_trg_accuracy.global_avg,
"flores200/test_trg_to_src_accuracy": metric_logger.test_trg_to_src_accuracy.global_avg,
"flores200/test_top3_accuracy": metric_logger.test_top3_accuracy.global_avg,
"flores200/test_src_to_trg_top3_accuracy": metric_logger.test_src_to_trg_top3_accuracy.global_avg,
"flores200/test_trg_to_src_top3_accuracy": metric_logger.test_trg_to_src_top3_accuracy.global_avg,
}
for language in xsim_results.keys():
wandb_log_dict["flores200/test_" + language] = metric_logger.meters[
language
].global_avg
wandb_log_dict["flores200/test_xsim_average"] = (
metric_logger.xsim_average.global_avg
)
if "mlm_loss" in outputs:
wandb_log_dict["flores200/test_mlm_loss"] = (
metric_logger.test_mlm_loss.global_avg
)
if "src_mlm_loss" in outputs:
wandb_log_dict["flores200/test_src_mlm_loss"] = (
metric_logger.test_src_mlm_loss.global_avg
)
if "trg_mlm_loss" in outputs:
wandb_log_dict["flores200/test_trg_mlm_loss"] = (
metric_logger.test_trg_mlm_loss.global_avg
)
if "cls_loss" in outputs:
wandb_log_dict["flores200/test_cls_loss"] = (
metric_logger.test_cls_loss.global_avg
)
if "koleo_loss" in outputs:
wandb_log_dict["flores200/test_koleo_loss"] = (
metric_logger.test_koleo_loss.global_avg
)
wandb.log(wandb_log_dict)