-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMetropHastingsExample.R
157 lines (107 loc) · 3.78 KB
/
MetropHastingsExample.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
data <- rnorm(20, 30,5)
########## This set of functions creates a metropolis-hastings
########## sampler for a vector of normally distributed data
########## It returns a data file with three elements, the raw samples
########## of mu, sigma, and then the acceptance rate
sample.sigmu <-function(x,dx,dsd,sig,mu){
sdstar <- runif(1,sig-dsd,sig+dsd)
xstar = runif(1,mu-dx,mu+dx)
while(sdstar < 0){
sdstar <- runif(1,sig-dsd,sig+dsd)
}
logalpha = sum(dnorm(x,mean=xstar,sd=sdstar,log=T) - dnorm(x,mu,sig,log=T))- log(sdstar/sig)
logu = log(runif(1,0,1))
acc = (logu < logalpha)
my.mu = acc*xstar + (1-acc)*mu
my.sig = acc*sdstar + (1-acc)*sig
return(list(mu = my.mu,sig=my.sig, acc=acc))
}
sample.mh<-function(n=10000,x,mu=3,sig=4,dx=2,dsd=2)
{
accab <- 0
mus<-rep(NaN,n)
sigs <- rep(NaN,n)
for(i in 1:n){
z = sample.sigmu(x,dx,dsd,sig,mu)
mus[i] = mu = z$mu
sigs[i] = sig = z$sig
accab = accab + z$acc
}
return(invisible(list(mean=mus, sig=sigs, accab=accab/n)))
}
mh.exam <- sample.mh(x=data)
######Now compare to our actual data
rbind(c(mean(data),mean(mh.exam$m)),c(sd(data),mean(mh.exam$sig)))
####We can plot our functions to see if they were sticky or well mixed
par(mfrow=c(1,2))
plot(mh.exam$m)
plot(mh.exam$s)
#using similar code as above, setting up a simple linear regression.
x <- c(44.61646,39.24717, 43.77985, 40.40638, 43.59542, 38.44058, 37.92276, 41.35069, 43.58636, 37.81024)
y <- c(48.49584, 44.69342, 48.62739, 44.46996, 48.37165, 40.59726, 43.14914, 48.73189, 54.60816, 41.23829)
####Function to center the data
fn <- function(x,a=0,b=1){
centered<- a+b*(x-mean(x))
return(centered)
}
sample.b <-function(x,y,alpha,beta,sig,db){
bstar <- abs(runif(1,beta-db,beta+db))
logalpha = sum(dnorm(y,mean=fn(x,alpha,bstar),sd=sig,log=T) - dnorm(y,mean=fn(x,alpha,beta),sd=sig,log=T))
logu = log(runif(1,0,1))
acc = (logu < logalpha)
my.beta = acc*bstar + (1-acc)*beta
return(list(beta=my.beta, accb=acc))
}
sample.sig <-function(x,y,alpha,beta,sig,dsd){
sdstar <- abs(runif(1,sig-dsd,sig+dsd))
logalpha = sum(dnorm(y,mean=fn(x,alpha,beta),sd=sdstar,log=T) - dnorm(y,fn(x,alpha,beta),sd=sig,log=T)) - log(sdstar/sig)
logu = log(runif(1,0,1))
accs = (logu < logalpha)
my.sig = accs*sdstar + (1-accs)*sig
return(list(sig = my.sig,accs = accs))}
sample.a <-function(x,y,alpha,beta,sig,da){
astar = abs(runif(1,alpha-da,alpha+da))
logalpha = sum(dnorm(y,mean=fn(x,astar,beta),sd=sig,log=T) - dnorm(y,mean=fn(x,alpha,beta),sd=sig,log=T))
logu = log(runif(1,0,1))
acc = (logu < logalpha)
my.alpha = acc*astar + (1-acc)*alpha
return(list(alpha = my.alpha,acca = acc))}
#############
### Here we put it all together
#######
sample.mh.linreg<-function(n=1000,x,y,alpha=-2,beta=3,sig=5,dsd=2,da=2,db=2)
{
acca <- 0
accb <- 0
accs <- 0
alphas<-rep(NaN,n)
betas<-rep(NaN,n)
sigs <- rep(NaN,n)
for(i in 1:n){
z = sample.a(x,y,alpha,beta,sig,da)
#cat("alpha and beta to be passed to q ",z$alpha," ",z$beta,"\n")
q <- sample.sig(x,y,alpha,beta,sig,dsd)
v <- sample.b(x,y,alpha,beta,sig,db)
betas[i] = beta = v$beta
alpha = z$alpha
alphas[i] <- mean(y)-mean(x)*beta
sigs[i] = sig = q$sig
acca = acca + z$acca
accs = accs + q$accs
accb = accb + v$accb
}
return(invisible(list(sig = sigs,alpha = alphas,beta =betas, accb=accb/n,acca=acca/n,accs=accs/n)))
}
my.n <- 5000
lreg.test <- sample.mh.linreg(n=my.n,x=x,y=y)
par(mfrow=c(3,1))
#####I'm allowing for a 1000 step burnin'
plot(lreg.test$sig[1000:my.n])
plot(lreg.test$alpha[1000:my.n])
plot(lreg.test$beta[1000:my.n])
####Compare to normal linear regression estimates
my.est <- lm(y~x)
my.table <- rbind(c(mean(lreg.test$alpha[1000:my.n]),my.est$coef[1]),c(mean(lreg.test$beta[1000:my.n]),my.est$coef[2]),c(mean(lreg.test$sig[1000:my.n]),sd(resid(my.est))))
colnames(my.table)<-c("MH Est","LS Est")
rownames(my.table)<-c("Intercep","Slope","Std Dev")
my.table