comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1926 |
Weekly Contest 426 Q3 |
|
There exist two undirected trees with n
and m
nodes, with distinct labels in ranges [0, n - 1]
and [0, m - 1]
, respectively.
You are given two 2D integer arrays edges1
and edges2
of lengths n - 1
and m - 1
, respectively, where edges1[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the first tree and edges2[i] = [ui, vi]
indicates that there is an edge between nodes ui
and vi
in the second tree. You are also given an integer k
.
Node u
is target to node v
if the number of edges on the path from u
to v
is less than or equal to k
. Note that a node is always target to itself.
Return an array of n
integers answer
, where answer[i]
is the maximum possible number of nodes target to node i
of the first tree if you have to connect one node from the first tree to another node in the second tree.
Note that queries are independent from each other. That is, for every query you will remove the added edge before proceeding to the next query.
Example 1:
Input: edges1 = [[0,1],[0,2],[2,3],[2,4]], edges2 = [[0,1],[0,2],[0,3],[2,7],[1,4],[4,5],[4,6]], k = 2
Output: [9,7,9,8,8]
Explanation:
- For
i = 0
, connect node 0 from the first tree to node 0 from the second tree. - For
i = 1
, connect node 1 from the first tree to node 0 from the second tree. - For
i = 2
, connect node 2 from the first tree to node 4 from the second tree. - For
i = 3
, connect node 3 from the first tree to node 4 from the second tree. - For
i = 4
, connect node 4 from the first tree to node 4 from the second tree.
Example 2:
Input: edges1 = [[0,1],[0,2],[0,3],[0,4]], edges2 = [[0,1],[1,2],[2,3]], k = 1
Output: [6,3,3,3,3]
Explanation:
For every i
, connect node i
of the first tree with any node of the second tree.
Constraints:
2 <= n, m <= 1000
edges1.length == n - 1
edges2.length == m - 1
edges1[i].length == edges2[i].length == 2
edges1[i] = [ai, bi]
0 <= ai, bi < n
edges2[i] = [ui, vi]
0 <= ui, vi < m
- The input is generated such that
edges1
andedges2
represent valid trees. 0 <= k <= 1000
According to the problem description, to maximize the number of target nodes for node
- In the first tree, the number of nodes reachable from node
$i$ within a depth of$k$ . - In the second tree, the maximum number of nodes reachable from any node
$j$ within a depth of$k - 1$ .
Thus, we can first calculate the number of nodes reachable within a depth of
The time complexity is
class Solution:
def maxTargetNodes(
self, edges1: List[List[int]], edges2: List[List[int]], k: int
) -> List[int]:
def build(edges: List[List[int]]) -> List[List[int]]:
n = len(edges) + 1
g = [[] for _ in range(n)]
for a, b in edges:
g[a].append(b)
g[b].append(a)
return g
def dfs(g: List[List[int]], a: int, fa: int, d: int) -> int:
if d < 0:
return 0
cnt = 1
for b in g[a]:
if b != fa:
cnt += dfs(g, b, a, d - 1)
return cnt
g2 = build(edges2)
m = len(edges2) + 1
t = max(dfs(g2, i, -1, k - 1) for i in range(m))
g1 = build(edges1)
n = len(edges1) + 1
return [dfs(g1, i, -1, k) + t for i in range(n)]
class Solution {
public int[] maxTargetNodes(int[][] edges1, int[][] edges2, int k) {
var g2 = build(edges2);
int m = edges2.length + 1;
int t = 0;
for (int i = 0; i < m; ++i) {
t = Math.max(t, dfs(g2, i, -1, k - 1));
}
var g1 = build(edges1);
int n = edges1.length + 1;
int[] ans = new int[n];
Arrays.fill(ans, t);
for (int i = 0; i < n; ++i) {
ans[i] += dfs(g1, i, -1, k);
}
return ans;
}
private List<Integer>[] build(int[][] edges) {
int n = edges.length + 1;
List<Integer>[] g = new List[n];
Arrays.setAll(g, i -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
return g;
}
private int dfs(List<Integer>[] g, int a, int fa, int d) {
if (d < 0) {
return 0;
}
int cnt = 1;
for (int b : g[a]) {
if (b != fa) {
cnt += dfs(g, b, a, d - 1);
}
}
return cnt;
}
}
class Solution {
public:
vector<int> maxTargetNodes(vector<vector<int>>& edges1, vector<vector<int>>& edges2, int k) {
auto g2 = build(edges2);
int m = edges2.size() + 1;
int t = 0;
for (int i = 0; i < m; ++i) {
t = max(t, dfs(g2, i, -1, k - 1));
}
auto g1 = build(edges1);
int n = edges1.size() + 1;
vector<int> ans(n, t);
for (int i = 0; i < n; ++i) {
ans[i] += dfs(g1, i, -1, k);
}
return ans;
}
private:
vector<vector<int>> build(const vector<vector<int>>& edges) {
int n = edges.size() + 1;
vector<vector<int>> g(n);
for (const auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
return g;
}
int dfs(const vector<vector<int>>& g, int a, int fa, int d) {
if (d < 0) {
return 0;
}
int cnt = 1;
for (int b : g[a]) {
if (b != fa) {
cnt += dfs(g, b, a, d - 1);
}
}
return cnt;
}
};
func maxTargetNodes(edges1 [][]int, edges2 [][]int, k int) []int {
g2 := build(edges2)
m := len(edges2) + 1
t := 0
for i := 0; i < m; i++ {
t = max(t, dfs(g2, i, -1, k-1))
}
g1 := build(edges1)
n := len(edges1) + 1
ans := make([]int, n)
for i := 0; i < n; i++ {
ans[i] = t + dfs(g1, i, -1, k)
}
return ans
}
func build(edges [][]int) [][]int {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
return g
}
func dfs(g [][]int, a, fa, d int) int {
if d < 0 {
return 0
}
cnt := 1
for _, b := range g[a] {
if b != fa {
cnt += dfs(g, b, a, d-1)
}
}
return cnt
}
function maxTargetNodes(edges1: number[][], edges2: number[][], k: number): number[] {
const g2 = build(edges2);
const m = edges2.length + 1;
let t = 0;
for (let i = 0; i < m; i++) {
t = Math.max(t, dfs(g2, i, -1, k - 1));
}
const g1 = build(edges1);
const n = edges1.length + 1;
const ans = Array(n).fill(t);
for (let i = 0; i < n; i++) {
ans[i] += dfs(g1, i, -1, k);
}
return ans;
}
function build(edges: number[][]): number[][] {
const n = edges.length + 1;
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
return g;
}
function dfs(g: number[][], a: number, fa: number, d: number): number {
if (d < 0) {
return 0;
}
let cnt = 1;
for (const b of g[a]) {
if (b !== fa) {
cnt += dfs(g, b, a, d - 1);
}
}
return cnt;
}
public class Solution {
public int[] MaxTargetNodes(int[][] edges1, int[][] edges2, int k) {
var g2 = Build(edges2);
int m = edges2.Length + 1;
int t = 0;
for (int i = 0; i < m; i++) {
t = Math.Max(t, Dfs(g2, i, -1, k - 1));
}
var g1 = Build(edges1);
int n = edges1.Length + 1;
var ans = new int[n];
Array.Fill(ans, t);
for (int i = 0; i < n; i++) {
ans[i] += Dfs(g1, i, -1, k);
}
return ans;
}
private List<int>[] Build(int[][] edges) {
int n = edges.Length + 1;
var g = new List<int>[n];
for (int i = 0; i < n; i++) {
g[i] = new List<int>();
}
foreach (var e in edges) {
int a = e[0], b = e[1];
g[a].Add(b);
g[b].Add(a);
}
return g;
}
private int Dfs(List<int>[] g, int a, int fa, int d) {
if (d < 0) {
return 0;
}
int cnt = 1;
foreach (var b in g[a]) {
if (b != fa) {
cnt += Dfs(g, b, a, d - 1);
}
}
return cnt;
}
}