Skip to content

Latest commit

 

History

History
282 lines (235 loc) · 7.51 KB

File metadata and controls

282 lines (235 loc) · 7.51 KB
comments difficulty edit_url rating source tags
true
Medium
1913
Weekly Contest 424 Q3
Array
Binary Search
Prefix Sum

中文文档

Description

You are given an integer array nums of length n and a 2D array queries where queries[i] = [li, ri, vali].

Each queries[i] represents the following action on nums:

  • Decrement the value at each index in the range [li, ri] in nums by at most vali.
  • The amount by which each value is decremented can be chosen independently for each index.

A Zero Array is an array with all its elements equal to 0.

Return the minimum possible non-negative value of k, such that after processing the first k queries in sequence, nums becomes a Zero Array. If no such k exists, return -1.

 

Example 1:

Input: nums = [2,0,2], queries = [[0,2,1],[0,2,1],[1,1,3]]

Output: 2

Explanation:

  • For i = 0 (l = 0, r = 2, val = 1):
    <ul>
    	<li>Decrement values at indices <code>[0, 1, 2]</code> by <code>[1, 0, 1]</code> respectively.</li>
    	<li>The array will become <code>[1, 0, 1]</code>.</li>
    </ul>
    </li>
    <li><strong>For i = 1 (l = 0, r = 2, val = 1):</strong>
    <ul>
    	<li>Decrement values at indices <code>[0, 1, 2]</code> by <code>[1, 0, 1]</code> respectively.</li>
    	<li>The array will become <code>[0, 0, 0]</code>, which is a Zero Array. Therefore, the minimum value of <code>k</code> is 2.</li>
    </ul>
    </li>
    

Example 2:

Input: nums = [4,3,2,1], queries = [[1,3,2],[0,2,1]]

Output: -1

Explanation:

  • For i = 0 (l = 1, r = 3, val = 2):
    <ul>
    	<li>Decrement values at indices <code>[1, 2, 3]</code> by <code>[2, 2, 1]</code> respectively.</li>
    	<li>The array will become <code>[4, 1, 0, 0]</code>.</li>
    </ul>
    </li>
    <li><strong>For i = 1 (l = 0, r = 2, val<span style="font-size: 13.3333px;"> </span>= 1):</strong>
    <ul>
    	<li>Decrement values at indices <code>[0, 1, 2]</code> by <code>[1, 1, 0]</code> respectively.</li>
    	<li>The array will become <code>[3, 0, 0, 0]</code>, which is not a Zero Array.</li>
    </ul>
    </li>
    

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 5 * 105
  • 1 <= queries.length <= 105
  • queries[i].length == 3
  • 0 <= li <= ri < nums.length
  • 1 <= vali <= 5

Solutions

Solution 1

Python3

class Solution:
    def minZeroArray(self, nums: List[int], queries: List[List[int]]) -> int:
        def check(k: int) -> bool:
            d = [0] * (len(nums) + 1)
            for l, r, val in queries[:k]:
                d[l] += val
                d[r + 1] -= val
            s = 0
            for x, y in zip(nums, d):
                s += y
                if x > s:
                    return False
            return True

        m = len(queries)
        l = bisect_left(range(m + 1), True, key=check)
        return -1 if l > m else l

Java

class Solution {
    private int n;
    private int[] nums;
    private int[][] queries;

    public int minZeroArray(int[] nums, int[][] queries) {
        this.nums = nums;
        this.queries = queries;
        n = nums.length;
        int m = queries.length;
        int l = 0, r = m + 1;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (check(mid)) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l > m ? -1 : l;
    }

    private boolean check(int k) {
        int[] d = new int[n + 1];
        for (int i = 0; i < k; ++i) {
            int l = queries[i][0], r = queries[i][1], val = queries[i][2];
            d[l] += val;
            d[r + 1] -= val;
        }
        for (int i = 0, s = 0; i < n; ++i) {
            s += d[i];
            if (nums[i] > s) {
                return false;
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    int minZeroArray(vector<int>& nums, vector<vector<int>>& queries) {
        int n = nums.size();
        int d[n + 1];
        int m = queries.size();
        int l = 0, r = m + 1;
        auto check = [&](int k) -> bool {
            memset(d, 0, sizeof(d));
            for (int i = 0; i < k; ++i) {
                int l = queries[i][0], r = queries[i][1], val = queries[i][2];
                d[l] += val;
                d[r + 1] -= val;
            }
            for (int i = 0, s = 0; i < n; ++i) {
                s += d[i];
                if (nums[i] > s) {
                    return false;
                }
            }
            return true;
        };
        while (l < r) {
            int mid = (l + r) >> 1;
            if (check(mid)) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l > m ? -1 : l;
    }
};

Go

func minZeroArray(nums []int, queries [][]int) int {
	n, m := len(nums), len(queries)
	l := sort.Search(m+1, func(k int) bool {
		d := make([]int, n+1)
		for _, q := range queries[:k] {
			l, r, val := q[0], q[1], q[2]
			d[l] += val
			d[r+1] -= val
		}
		s := 0
		for i, x := range nums {
			s += d[i]
			if x > s {
				return false
			}
		}
		return true
	})
	if l > m {
		return -1
	}
	return l
}

TypeScript

function minZeroArray(nums: number[], queries: number[][]): number {
    const [n, m] = [nums.length, queries.length];
    const d: number[] = Array(n + 1);
    let [l, r] = [0, m + 1];
    const check = (k: number): boolean => {
        d.fill(0);
        for (let i = 0; i < k; ++i) {
            const [l, r, val] = queries[i];
            d[l] += val;
            d[r + 1] -= val;
        }
        for (let i = 0, s = 0; i < n; ++i) {
            s += d[i];
            if (nums[i] > s) {
                return false;
            }
        }
        return true;
    };
    while (l < r) {
        const mid = (l + r) >> 1;
        if (check(mid)) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l > m ? -1 : l;
}