comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Easy |
1298 |
Weekly Contest 423 Q1 |
|
Given an array nums
of n
integers and an integer k
, determine whether there exist two adjacent subarrays of length k
such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a
and b
(a < b
), where:
- Both subarrays
nums[a..a + k - 1]
andnums[b..b + k - 1]
are strictly increasing. - The subarrays must be adjacent, meaning
b = a + k
.
Return true
if it is possible to find two such subarrays, and false
otherwise.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3
Output: true
Explanation:
- The subarray starting at index
2
is[7, 8, 9]
, which is strictly increasing. - The subarray starting at index
5
is[2, 3, 4]
, which is also strictly increasing. - These two subarrays are adjacent, so the result is
true
.
Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5
Output: false
Constraints:
2 <= nums.length <= 100
1 < 2 * k <= nums.length
-1000 <= nums[i] <= 1000
class Solution:
def hasIncreasingSubarrays(self, nums: List[int], k: int) -> bool:
mx = pre = cur = 0
for i, x in enumerate(nums):
cur += 1
if i == len(nums) - 1 or x >= nums[i + 1]:
mx = max(mx, cur // 2, min(pre, cur))
pre, cur = cur, 0
return mx >= k
class Solution {
public boolean hasIncreasingSubarrays(List<Integer> nums, int k) {
int mx = 0, pre = 0, cur = 0;
int n = nums.size();
for (int i = 0; i < n; ++i) {
++cur;
if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) {
mx = Math.max(mx, Math.max(cur / 2, Math.min(pre, cur)));
pre = cur;
cur = 0;
}
}
return mx >= k;
}
}
class Solution {
public:
bool hasIncreasingSubarrays(vector<int>& nums, int k) {
int mx = 0, pre = 0, cur = 0;
int n = nums.size();
for (int i = 0; i < n; ++i) {
++cur;
if (i == n - 1 || nums[i] >= nums[i + 1]) {
mx = max({mx, cur / 2, min(pre, cur)});
pre = cur;
cur = 0;
}
}
return mx >= k;
}
};
func hasIncreasingSubarrays(nums []int, k int) bool {
mx, pre, cur := 0, 0, 0
for i, x := range nums {
cur++
if i == len(nums)-1 || x >= nums[i+1] {
mx = max(mx, max(cur/2, min(pre, cur)))
pre, cur = cur, 0
}
}
return mx >= k
}
function hasIncreasingSubarrays(nums: number[], k: number): boolean {
let [mx, pre, cur] = [0, 0, 0];
const n = nums.length;
for (let i = 0; i < n; ++i) {
++cur;
if (i === n - 1 || nums[i] >= nums[i + 1]) {
mx = Math.max(mx, (cur / 2) | 0, Math.min(pre, cur));
[pre, cur] = [cur, 0];
}
}
return mx >= k;
}