Skip to content

Latest commit

 

History

History
182 lines (140 loc) · 5.28 KB

File metadata and controls

182 lines (140 loc) · 5.28 KB
comments difficulty edit_url tags
true
Hard
Hash Table
String
Sliding Window

中文文档

Description

Given a string s and an integer k, return the total number of substrings of s where at least one character appears at least k times.

 

Example 1:

Input: s = "abacb", k = 2

Output: 4

Explanation:

The valid substrings are:

  • "aba" (character 'a' appears 2 times).
  • "abac" (character 'a' appears 2 times).
  • "abacb" (character 'a' appears 2 times).
  • "bacb" (character 'b' appears 2 times).

Example 2:

Input: s = "abcde", k = 1

Output: 15

Explanation:

All substrings are valid because every character appears at least once.

 

Constraints:

  • 1 <= s.length <= 3 * 105
  • 1 <= k <= s.length
  • s consists only of lowercase English letters.

Solutions

Solution 1: Sliding Window

We can enumerate the right endpoint of the substring, and then use a sliding window to maintain the left endpoint of the substring, ensuring that the occurrence count of each character in the sliding window is less than $k$.

We can use an array $\textit{cnt}$ to maintain the occurrence count of each character in the sliding window, then use a variable $\textit{l}$ to maintain the left endpoint of the sliding window, and use a variable $\textit{ans}$ to maintain the answer.

When we enumerate the right endpoint, we can add the character at the right endpoint to the sliding window, then check if the occurrence count of the character at the right endpoint in the sliding window is greater than or equal to $k$. If it is, we remove the character at the left endpoint from the sliding window until the occurrence count of each character in the sliding window is less than $k$. At this point, for substrings with left endpoints in the range $[0, ..l - 1]$ and right endpoint $r$, all satisfy the problem's requirements, so we add $l$ to the answer.

After enumeration, we return the answer.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(|\Sigma|)$, where $\Sigma$ is the character set, which in this case is the set of lowercase letters, so $|\Sigma| = 26$.

Python3

class Solution:
    def numberOfSubstrings(self, s: str, k: int) -> int:
        cnt = Counter()
        ans = l = 0
        for c in s:
            cnt[c] += 1
            while cnt[c] >= k:
                cnt[s[l]] -= 1
                l += 1
            ans += l
        return ans

Java

class Solution {
    public long numberOfSubstrings(String s, int k) {
        int[] cnt = new int[26];
        long ans = 0;
        for (int l = 0, r = 0; r < s.length(); ++r) {
            int c = s.charAt(r) - 'a';
            ++cnt[c];
            while (cnt[c] >= k) {
                --cnt[s.charAt(l) - 'a'];
                l++;
            }
            ans += l;
        }
        return ans;
    }
}

C++

class Solution {
public:
    long long numberOfSubstrings(string s, int k) {
        int n = s.size();
        long long ans = 0, l = 0;
        int cnt[26]{};
        for (char& c : s) {
            ++cnt[c - 'a'];
            while (cnt[c - 'a'] >= k) {
                --cnt[s[l++] - 'a'];
            }
            ans += l;
        }
        return ans;
    }
};

Go

func numberOfSubstrings(s string, k int) (ans int64) {
	l := 0
	cnt := [26]int{}
	for _, c := range s {
		cnt[c-'a']++
		for cnt[c-'a'] >= k {
			cnt[s[l]-'a']--
			l++
		}
		ans += int64(l)
	}
	return
}

TypeScript

function numberOfSubstrings(s: string, k: number): number {
    let [ans, l] = [0, 0];
    const cnt: number[] = Array(26).fill(0);
    for (const c of s) {
        const x = c.charCodeAt(0) - 97;
        ++cnt[x];
        while (cnt[x] >= k) {
            --cnt[s[l++].charCodeAt(0) - 97];
        }
        ans += l;
    }
    return ans;
}