Skip to content

Latest commit

 

History

History
332 lines (265 loc) · 7.72 KB

File metadata and controls

332 lines (265 loc) · 7.72 KB
comments difficulty edit_url rating source tags
true
Hard
2382
Biweekly Contest 138 Q3
Hash Table
Math
Combinatorics
Enumeration

中文文档

Description

You are given two positive integers n and k.

An integer x is called k-palindromic if:

  • x is a palindrome.
  • x is divisible by k.

An integer is called good if its digits can be rearranged to form a k-palindromic integer. For example, for k = 2, 2020 can be rearranged to form the k-palindromic integer 2002, whereas 1010 cannot be rearranged to form a k-palindromic integer.

Return the count of good integers containing n digits.

Note that any integer must not have leading zeros, neither before nor after rearrangement. For example, 1010 cannot be rearranged to form 101.

 

Example 1:

Input: n = 3, k = 5

Output: 27

Explanation:

Some of the good integers are:

  • 551 because it can be rearranged to form 515.
  • 525 because it is already k-palindromic.

Example 2:

Input: n = 1, k = 4

Output: 2

Explanation:

The two good integers are 4 and 8.

Example 3:

Input: n = 5, k = 6

Output: 2468

 

Constraints:

  • 1 <= n <= 10
  • 1 <= k <= 9

Solutions

Solution 1

Python3

class Solution:
    def countGoodIntegers(self, n: int, k: int) -> int:
        fac = [factorial(i) for i in range(n + 1)]
        ans = 0
        vis = set()
        base = 10 ** ((n - 1) // 2)
        for i in range(base, base * 10):
            s = str(i)
            s += s[::-1][n % 2 :]
            if int(s) % k:
                continue
            t = "".join(sorted(s))
            if t in vis:
                continue
            vis.add(t)
            cnt = Counter(t)
            res = (n - cnt["0"]) * fac[n - 1]
            for x in cnt.values():
                res //= fac[x]
            ans += res
        return ans

Java

class Solution {
    public long countGoodIntegers(int n, int k) {
        long[] fac = new long[n + 1];
        fac[0] = 1;
        for (int i = 1; i <= n; i++) {
            fac[i] = fac[i - 1] * i;
        }

        long ans = 0;
        Set<String> vis = new HashSet<>();
        int base = (int) Math.pow(10, (n - 1) / 2);

        for (int i = base; i < base * 10; i++) {
            String s = String.valueOf(i);
            StringBuilder sb = new StringBuilder(s).reverse();
            s += sb.substring(n % 2);
            if (Long.parseLong(s) % k != 0) {
                continue;
            }

            char[] arr = s.toCharArray();
            Arrays.sort(arr);
            String t = new String(arr);
            if (vis.contains(t)) {
                continue;
            }
            vis.add(t);
            int[] cnt = new int[10];
            for (char c : arr) {
                cnt[c - '0']++;
            }

            long res = (n - cnt[0]) * fac[n - 1];
            for (int x : cnt) {
                res /= fac[x];
            }
            ans += res;
        }

        return ans;
    }
}

C++

class Solution {
public:
    long long countGoodIntegers(int n, int k) {
        vector<long long> fac(n + 1, 1);
        for (int i = 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * i;
        }

        long long ans = 0;
        unordered_set<string> vis;
        int base = pow(10, (n - 1) / 2);

        for (int i = base; i < base * 10; ++i) {
            string s = to_string(i);
            string rev = s;
            reverse(rev.begin(), rev.end());
            s += rev.substr(n % 2);
            if (stoll(s) % k) {
                continue;
            }
            string t = s;
            sort(t.begin(), t.end());
            if (vis.count(t)) {
                continue;
            }
            vis.insert(t);
            vector<int> cnt(10);
            for (char c : t) {
                cnt[c - '0']++;
            }
            long long res = (n - cnt[0]) * fac[n - 1];
            for (int x : cnt) {
                res /= fac[x];
            }
            ans += res;
        }
        return ans;
    }
};

Go

func factorial(n int) []int64 {
	fac := make([]int64, n+1)
	fac[0] = 1
	for i := 1; i <= n; i++ {
		fac[i] = fac[i-1] * int64(i)
	}
	return fac
}

func countGoodIntegers(n int, k int) (ans int64) {
	fac := factorial(n)
	vis := make(map[string]bool)
	base := int(math.Pow(10, float64((n-1)/2)))

	for i := base; i < base*10; i++ {
		s := strconv.Itoa(i)
		rev := reverseString(s)
		s += rev[n%2:]
		num, _ := strconv.ParseInt(s, 10, 64)
		if num%int64(k) != 0 {
			continue
		}
		bs := []byte(s)
		slices.Sort(bs)
		t := string(bs)

		if vis[t] {
			continue
		}
		vis[t] = true
		cnt := make([]int, 10)
		for _, c := range t {
			cnt[c-'0']++
		}
		res := (int64(n) - int64(cnt[0])) * fac[n-1]
		for _, x := range cnt {
			res /= fac[x]
		}
		ans += res
	}

	return
}

func reverseString(s string) string {
	t := []byte(s)
	for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 {
		t[i], t[j] = t[j], t[i]
	}
	return string(t)
}

TypeScript

function factorial(n: number): number[] {
    const fac = Array(n + 1).fill(1);
    for (let i = 1; i <= n; i++) {
        fac[i] = fac[i - 1] * i;
    }
    return fac;
}

function reverseString(s: string): string {
    return s.split('').reverse().join('');
}

function countGoodIntegers(n: number, k: number): number {
    const fac = factorial(n);
    let ans = 0;
    const vis = new Set<string>();
    const base = Math.pow(10, Math.floor((n - 1) / 2));

    for (let i = base; i < base * 10; i++) {
        let s = i.toString();
        const rev = reverseString(s);
        if (n % 2 === 1) {
            s += rev.substring(1);
        } else {
            s += rev;
        }

        const num = parseInt(s, 10);
        if (num % k !== 0) {
            continue;
        }

        const bs = Array.from(s).sort();
        const t = bs.join('');

        if (vis.has(t)) {
            continue;
        }

        vis.add(t);

        const cnt = Array(10).fill(0);
        for (const c of t) {
            cnt[+c]++;
        }

        let res = (n - cnt[0]) * fac[n - 1];
        for (const x of cnt) {
            res /= fac[x];
        }
        ans += res;
    }

    return ans;
}