Skip to content

Latest commit

 

History

History
445 lines (379 loc) · 12.5 KB

File metadata and controls

445 lines (379 loc) · 12.5 KB
comments difficulty edit_url rating source tags
true
中等
1849
第 132 场双周赛 Q3
数组
哈希表
动态规划

English Version

题目描述

给你一个整数数组 nums 和一个 非负 整数 k 。如果一个整数序列 seq 满足在下标范围 [0, seq.length - 2] 中 最多只有 k 个下标 i 满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为  序列。

请你返回 nums 中  子序列 的最长长度。

 

示例 1:

输入:nums = [1,2,1,1,3], k = 2

输出:4

解释:

最长好子序列为 [1,2,1,1,3] 。

示例 2:

输入:nums = [1,2,3,4,5,1], k = 0

输出:2

解释:

最长好子序列为 [1,2,3,4,5,1] 。

 

提示:

  • 1 <= nums.length <= 500
  • 1 <= nums[i] <= 109
  • 0 <= k <= min(nums.length, 25)

解法

方法一:动态规划

我们定义 $f[i][h]$ 表示以 $nums[i]$ 结尾,且有不超过 $h$ 个下标满足条件的最长好子序列的长度。初始时 $f[i][h] = 1$。答案为 $\max(f[i][k])$,其中 $0 \le i &lt; n$

我们考虑如何计算 $f[i][h]$。我们可以枚举 $0 \le j &lt; i$,如果 $nums[i] = nums[j]$,那么 $f[i][h] = \max(f[i][h], f[j][h] + 1)$;否则如果 $h &gt; 0$,那么 $f[i][h] = \max(f[i][h], f[j][h - 1] + 1)$。即:

$$ f[i][h]= \begin{cases} \max(f[i][h], f[j][h] + 1), & \textit{if } nums[i] = nums[j], \\ \max(f[i][h], f[j][h - 1] + 1), & \textit{if } h > 0. \end{cases} $$

最终答案为 $\max(f[i][k])$,其中 $0 \le i &lt; n$

时间复杂度 $O(n^2 \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 是数组 nums 的长度。

Python3

class Solution:
    def maximumLength(self, nums: List[int], k: int) -> int:
        n = len(nums)
        f = [[1] * (k + 1) for _ in range(n)]
        ans = 0
        for i, x in enumerate(nums):
            for h in range(k + 1):
                for j, y in enumerate(nums[:i]):
                    if x == y:
                        f[i][h] = max(f[i][h], f[j][h] + 1)
                    elif h:
                        f[i][h] = max(f[i][h], f[j][h - 1] + 1)
            ans = max(ans, f[i][k])
        return ans

Java

class Solution {
    public int maximumLength(int[] nums, int k) {
        int n = nums.length;
        int[][] f = new int[n][k + 1];
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            for (int h = 0; h <= k; ++h) {
                for (int j = 0; j < i; ++j) {
                    if (nums[i] == nums[j]) {
                        f[i][h] = Math.max(f[i][h], f[j][h]);
                    } else if (h > 0) {
                        f[i][h] = Math.max(f[i][h], f[j][h - 1]);
                    }
                }
                ++f[i][h];
            }
            ans = Math.max(ans, f[i][k]);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maximumLength(vector<int>& nums, int k) {
        int n = nums.size();
        int f[n][k + 1];
        memset(f, 0, sizeof(f));
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            for (int h = 0; h <= k; ++h) {
                for (int j = 0; j < i; ++j) {
                    if (nums[i] == nums[j]) {
                        f[i][h] = max(f[i][h], f[j][h]);
                    } else if (h) {
                        f[i][h] = max(f[i][h], f[j][h - 1]);
                    }
                }
                ++f[i][h];
            }
            ans = max(ans, f[i][k]);
        }
        return ans;
    }
};

Go

func maximumLength(nums []int, k int) (ans int) {
	f := make([][]int, len(nums))
	for i := range f {
		f[i] = make([]int, k+1)
	}
	for i, x := range nums {
		for h := 0; h <= k; h++ {
			for j, y := range nums[:i] {
				if x == y {
					f[i][h] = max(f[i][h], f[j][h])
				} else if h > 0 {
					f[i][h] = max(f[i][h], f[j][h-1])
				}
			}
			f[i][h]++
		}
		ans = max(ans, f[i][k])
	}
	return
}

TypeScript

function maximumLength(nums: number[], k: number): number {
    const n = nums.length;
    const f: number[][] = Array.from({ length: n }, () => Array(k + 1).fill(0));
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        for (let h = 0; h <= k; ++h) {
            for (let j = 0; j < i; ++j) {
                if (nums[i] === nums[j]) {
                    f[i][h] = Math.max(f[i][h], f[j][h]);
                } else if (h) {
                    f[i][h] = Math.max(f[i][h], f[j][h - 1]);
                }
            }
            ++f[i][h];
        }
        ans = Math.max(ans, f[i][k]);
    }
    return ans;
}

方法二:动态规划优化

根据方法一的状态转移方程,如果 $nums[i] = nums[j]$,那么我们只需要获取 $f[j][h]$ 的最大值,我们可以用一个长度为 $k + 1$ 的数组 $mp$ 来维护。如果 $nums[i] \neq nums[j]$,我们需要记录 $f[j][h - 1]$ 的最大值对应的 $nums[j]$,最大值和次大值,我们可以用一个长度为 $k + 1$ 的数组 $g$ 来维护。

时间复杂度 $O(n \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 是数组 nums 的长度。

Python3

class Solution:
    def maximumLength(self, nums: List[int], k: int) -> int:
        n = len(nums)
        f = [[0] * (k + 1) for _ in range(n)]
        mp = [defaultdict(int) for _ in range(k + 1)]
        g = [[0] * 3 for _ in range(k + 1)]
        ans = 0
        for i, x in enumerate(nums):
            for h in range(k + 1):
                f[i][h] = mp[h][x]
                if h:
                    if g[h - 1][0] != nums[i]:
                        f[i][h] = max(f[i][h], g[h - 1][1])
                    else:
                        f[i][h] = max(f[i][h], g[h - 1][2])
                f[i][h] += 1
                mp[h][nums[i]] = max(mp[h][nums[i]], f[i][h])
                if g[h][0] != x:
                    if f[i][h] >= g[h][1]:
                        g[h][2] = g[h][1]
                        g[h][1] = f[i][h]
                        g[h][0] = x
                    else:
                        g[h][2] = max(g[h][2], f[i][h])
                else:
                    g[h][1] = max(g[h][1], f[i][h])
                ans = max(ans, f[i][h])
        return ans

Java

class Solution {
    public int maximumLength(int[] nums, int k) {
        int n = nums.length;
        int[][] f = new int[n][k + 1];
        Map<Integer, Integer>[] mp = new HashMap[k + 1];
        Arrays.setAll(mp, i -> new HashMap<>());
        int[][] g = new int[k + 1][3];
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            for (int h = 0; h <= k; ++h) {
                f[i][h] = mp[h].getOrDefault(nums[i], 0);
                if (h > 0) {
                    if (g[h - 1][0] != nums[i]) {
                        f[i][h] = Math.max(f[i][h], g[h - 1][1]);
                    } else {
                        f[i][h] = Math.max(f[i][h], g[h - 1][2]);
                    }
                }
                ++f[i][h];
                mp[h].merge(nums[i], f[i][h], Integer::max);
                if (g[h][0] != nums[i]) {
                    if (f[i][h] >= g[h][1]) {
                        g[h][2] = g[h][1];
                        g[h][1] = f[i][h];
                        g[h][0] = nums[i];
                    } else {
                        g[h][2] = Math.max(g[h][2], f[i][h]);
                    }
                } else {
                    g[h][1] = Math.max(g[h][1], f[i][h]);
                }
                ans = Math.max(ans, f[i][h]);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maximumLength(vector<int>& nums, int k) {
        int n = nums.size();
        vector<vector<int>> f(n, vector<int>(k + 1));
        vector<unordered_map<int, int>> mp(k + 1);
        vector<vector<int>> g(k + 1, vector<int>(3));
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            for (int h = 0; h <= k; ++h) {
                f[i][h] = mp[h][nums[i]];
                if (h > 0) {
                    if (g[h - 1][0] != nums[i]) {
                        f[i][h] = max(f[i][h], g[h - 1][1]);
                    } else {
                        f[i][h] = max(f[i][h], g[h - 1][2]);
                    }
                }
                ++f[i][h];
                mp[h][nums[i]] = max(mp[h][nums[i]], f[i][h]);
                if (g[h][0] != nums[i]) {
                    if (f[i][h] >= g[h][1]) {
                        g[h][2] = g[h][1];
                        g[h][1] = f[i][h];
                        g[h][0] = nums[i];
                    } else {
                        g[h][2] = max(g[h][2], f[i][h]);
                    }
                } else {
                    g[h][1] = max(g[h][1], f[i][h]);
                }
                ans = max(ans, f[i][h]);
            }
        }

        return ans;
    }
};

Go

func maximumLength(nums []int, k int) int {
	n := len(nums)
	f := make([][]int, n)
	for i := range f {
		f[i] = make([]int, k+1)
	}
	mp := make([]map[int]int, k+1)
	for i := range mp {
		mp[i] = make(map[int]int)
	}
	g := make([][3]int, k+1)
	ans := 0

	for i := 0; i < n; i++ {
		for h := 0; h <= k; h++ {
			f[i][h] = mp[h][nums[i]]
			if h > 0 {
				if g[h-1][0] != nums[i] {
					if g[h-1][1] > f[i][h] {
						f[i][h] = g[h-1][1]
					}
				} else {
					if g[h-1][2] > f[i][h] {
						f[i][h] = g[h-1][2]
					}
				}
			}
			f[i][h]++
			if f[i][h] > mp[h][nums[i]] {
				mp[h][nums[i]] = f[i][h]
			}
			if g[h][0] != nums[i] {
				if f[i][h] >= g[h][1] {
					g[h][2] = g[h][1]
					g[h][1] = f[i][h]
					g[h][0] = nums[i]
				} else if f[i][h] > g[h][2] {
					g[h][2] = f[i][h]
				}
			} else {
				if f[i][h] > g[h][1] {
					g[h][1] = f[i][h]
				}
			}
			if f[i][h] > ans {
				ans = f[i][h]
			}
		}
	}

	return ans
}

TypeScript

function maximumLength(nums: number[], k: number): number {
    const n = nums.length;
    const f: number[][] = Array.from({ length: n }, () => Array(k + 1).fill(0));
    const mp: Map<number, number>[] = Array.from({ length: k + 1 }, () => new Map());
    const g: number[][] = Array.from({ length: k + 1 }, () => Array(3).fill(0));
    let ans = 0;

    for (let i = 0; i < n; i++) {
        for (let h = 0; h <= k; h++) {
            f[i][h] = mp[h].get(nums[i]) || 0;
            if (h > 0) {
                if (g[h - 1][0] !== nums[i]) {
                    f[i][h] = Math.max(f[i][h], g[h - 1][1]);
                } else {
                    f[i][h] = Math.max(f[i][h], g[h - 1][2]);
                }
            }
            f[i][h]++;
            mp[h].set(nums[i], Math.max(mp[h].get(nums[i]) || 0, f[i][h]));
            if (g[h][0] !== nums[i]) {
                if (f[i][h] >= g[h][1]) {
                    g[h][2] = g[h][1];
                    g[h][1] = f[i][h];
                    g[h][0] = nums[i];
                } else {
                    g[h][2] = Math.max(g[h][2], f[i][h]);
                }
            } else {
                g[h][1] = Math.max(g[h][1], f[i][h]);
            }
            ans = Math.max(ans, f[i][h]);
        }
    }

    return ans;
}