Skip to content

Latest commit

 

History

History
272 lines (234 loc) · 9.35 KB

File metadata and controls

272 lines (234 loc) · 9.35 KB
comments difficulty edit_url rating source tags
true
Medium
1908
Biweekly Contest 125 Q3
Tree
Depth-First Search
Array

中文文档

Description

You are given an unrooted weighted tree with n vertices representing servers numbered from 0 to n - 1, an array edges where edges[i] = [ai, bi, weighti] represents a bidirectional edge between vertices ai and bi of weight weighti. You are also given an integer signalSpeed.

Two servers a and b are connectable through a server c if:

  • a < b, a != c and b != c.
  • The distance from c to a is divisible by signalSpeed.
  • The distance from c to b is divisible by signalSpeed.
  • The path from c to b and the path from c to a do not share any edges.

Return an integer array count of length n where count[i] is the number of server pairs that are connectable through the server i.

 

Example 1:

Input: edges = [[0,1,1],[1,2,5],[2,3,13],[3,4,9],[4,5,2]], signalSpeed = 1
Output: [0,4,6,6,4,0]
Explanation: Since signalSpeed is 1, count[c] is equal to the number of pairs of paths that start at c and do not share any edges.
In the case of the given path graph, count[c] is equal to the number of servers to the left of c multiplied by the servers to the right of c.

Example 2:

Input: edges = [[0,6,3],[6,5,3],[0,3,1],[3,2,7],[3,1,6],[3,4,2]], signalSpeed = 3
Output: [2,0,0,0,0,0,2]
Explanation: Through server 0, there are 2 pairs of connectable servers: (4, 5) and (4, 6).
Through server 6, there are 2 pairs of connectable servers: (4, 5) and (0, 5).
It can be shown that no two servers are connectable through servers other than 0 and 6.

 

Constraints:

  • 2 <= n <= 1000
  • edges.length == n - 1
  • edges[i].length == 3
  • 0 <= ai, bi < n
  • edges[i] = [ai, bi, weighti]
  • 1 <= weighti <= 106
  • 1 <= signalSpeed <= 106
  • The input is generated such that edges represents a valid tree.

Solutions

Solution 1: Enumeration + DFS

First, we construct an adjacency list g based on the edges given in the problem, where g[a] represents all the neighbor nodes of node a and their corresponding edge weights.

Then, we can enumerate each node a as the connecting intermediate node, and calculate the number of nodes t that start from the neighbor node b of a and whose distance to node a can be divided by signalSpeed through depth-first search. Then, the number of connectable node pairs of node a increases by s * t, where s represents the cumulative number of nodes that start from the neighbor node b of a and whose distance to node a cannot be divided by signalSpeed. Then we update s to s + t.

After enumerating all nodes a, we can get the number of connectable node pairs for all nodes.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$, where $n$ is the number of nodes.

Python3

class Solution:
    def countPairsOfConnectableServers(
        self, edges: List[List[int]], signalSpeed: int
    ) -> List[int]:
        def dfs(a: int, fa: int, ws: int) -> int:
            cnt = 0 if ws % signalSpeed else 1
            for b, w in g[a]:
                if b != fa:
                    cnt += dfs(b, a, ws + w)
            return cnt

        n = len(edges) + 1
        g = [[] for _ in range(n)]
        for a, b, w in edges:
            g[a].append((b, w))
            g[b].append((a, w))
        ans = [0] * n
        for a in range(n):
            s = 0
            for b, w in g[a]:
                t = dfs(b, a, w)
                ans[a] += s * t
                s += t
        return ans

Java

class Solution {
    private int signalSpeed;
    private List<int[]>[] g;

    public int[] countPairsOfConnectableServers(int[][] edges, int signalSpeed) {
        int n = edges.length + 1;
        g = new List[n];
        this.signalSpeed = signalSpeed;
        Arrays.setAll(g, k -> new ArrayList<>());
        for (var e : edges) {
            int a = e[0], b = e[1], w = e[2];
            g[a].add(new int[] {b, w});
            g[b].add(new int[] {a, w});
        }
        int[] ans = new int[n];
        for (int a = 0; a < n; ++a) {
            int s = 0;
            for (var e : g[a]) {
                int b = e[0], w = e[1];
                int t = dfs(b, a, w);
                ans[a] += s * t;
                s += t;
            }
        }
        return ans;
    }

    private int dfs(int a, int fa, int ws) {
        int cnt = ws % signalSpeed == 0 ? 1 : 0;
        for (var e : g[a]) {
            int b = e[0], w = e[1];
            if (b != fa) {
                cnt += dfs(b, a, ws + w);
            }
        }
        return cnt;
    }
}

C++

class Solution {
public:
    vector<int> countPairsOfConnectableServers(vector<vector<int>>& edges, int signalSpeed) {
        int n = edges.size() + 1;
        vector<pair<int, int>> g[n];
        for (auto& e : edges) {
            int a = e[0], b = e[1], w = e[2];
            g[a].emplace_back(b, w);
            g[b].emplace_back(a, w);
        }
        function<int(int, int, int)> dfs = [&](int a, int fa, int ws) {
            int cnt = ws % signalSpeed == 0;
            for (auto& [b, w] : g[a]) {
                if (b != fa) {
                    cnt += dfs(b, a, ws + w);
                }
            }
            return cnt;
        };
        vector<int> ans(n);
        for (int a = 0; a < n; ++a) {
            int s = 0;
            for (auto& [b, w] : g[a]) {
                int t = dfs(b, a, w);
                ans[a] += s * t;
                s += t;
            }
        }
        return ans;
    }
};

Go

func countPairsOfConnectableServers(edges [][]int, signalSpeed int) []int {
	n := len(edges) + 1
	type pair struct{ x, w int }
	g := make([][]pair, n)
	for _, e := range edges {
		a, b, w := e[0], e[1], e[2]
		g[a] = append(g[a], pair{b, w})
		g[b] = append(g[b], pair{a, w})
	}
	var dfs func(a, fa, ws int) int
	dfs = func(a, fa, ws int) int {
		cnt := 0
		if ws%signalSpeed == 0 {
			cnt++
		}
		for _, e := range g[a] {
			b, w := e.x, e.w
			if b != fa {
				cnt += dfs(b, a, ws+w)
			}
		}
		return cnt
	}
	ans := make([]int, n)
	for a := 0; a < n; a++ {
		s := 0
		for _, e := range g[a] {
			b, w := e.x, e.w
			t := dfs(b, a, w)
			ans[a] += s * t
			s += t
		}
	}
	return ans
}

TypeScript

function countPairsOfConnectableServers(edges: number[][], signalSpeed: number): number[] {
    const n = edges.length + 1;
    const g: [number, number][][] = Array.from({ length: n }, () => []);
    for (const [a, b, w] of edges) {
        g[a].push([b, w]);
        g[b].push([a, w]);
    }
    const dfs = (a: number, fa: number, ws: number): number => {
        let cnt = ws % signalSpeed === 0 ? 1 : 0;
        for (const [b, w] of g[a]) {
            if (b != fa) {
                cnt += dfs(b, a, ws + w);
            }
        }
        return cnt;
    };
    const ans: number[] = Array(n).fill(0);
    for (let a = 0; a < n; ++a) {
        let s = 0;
        for (const [b, w] of g[a]) {
            const t = dfs(b, a, w);
            ans[a] += s * t;
            s += t;
        }
    }
    return ans;
}