comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
You are given a 0-indexed array nums
and a 0-indexed array queries
.
You can do the following operation at the beginning at most once:
- Replace
nums
with a subsequence ofnums
.
We start processing queries in the given order; for each query, we do the following:
- If the first and the last element of
nums
is less thanqueries[i]
, the processing of queries ends. - Otherwise, we choose either the first or the last element of
nums
if it is greater than or equal toqueries[i]
, and we remove the chosen element fromnums
.
Return the maximum number of queries that can be processed by doing the operation optimally.
Example 1:
Input: nums = [1,2,3,4,5], queries = [1,2,3,4,6] Output: 4 Explanation: We don't do any operation and process the queries as follows: 1- We choose and remove nums[0] since 1 <= 1, then nums becomes [2,3,4,5]. 2- We choose and remove nums[0] since 2 <= 2, then nums becomes [3,4,5]. 3- We choose and remove nums[0] since 3 <= 3, then nums becomes [4,5]. 4- We choose and remove nums[0] since 4 <= 4, then nums becomes [5]. 5- We can not choose any elements from nums since they are not greater than or equal to 5. Hence, the answer is 4. It can be shown that we can't process more than 4 queries.
Example 2:
Input: nums = [2,3,2], queries = [2,2,3] Output: 3 Explanation: We don't do any operation and process the queries as follows: 1- We choose and remove nums[0] since 2 <= 2, then nums becomes [3,2]. 2- We choose and remove nums[1] since 2 <= 2, then nums becomes [3]. 3- We choose and remove nums[0] since 3 <= 3, then nums becomes []. Hence, the answer is 3. It can be shown that we can't process more than 3 queries.
Example 3:
Input: nums = [3,4,3], queries = [4,3,2] Output: 2 Explanation: First we replace nums with the subsequence of nums [4,3]. Then we can process the queries as follows: 1- We choose and remove nums[0] since 4 <= 4, then nums becomes [3]. 2- We choose and remove nums[0] since 3 <= 3, then nums becomes []. 3- We can not process any more queries since nums is empty. Hence, the answer is 2. It can be shown that we can't process more than 2 queries.
Constraints:
1 <= nums.length <= 1000
1 <= queries.length <= 1000
1 <= nums[i], queries[i] <= 109
We define
Consider
- If
$i > 0$ , the value of$f[i][j]$ can be transferred from$f[i - 1][j]$ . If$nums[i - 1] \ge queries[f[i - 1][j]]$ , we can choose to delete$nums[i - 1]$ . Therefore, we have$f[i][j] = f[i - 1][j] + (nums[i - 1] \ge queries[f[i - 1][j]])$ . - If
$j + 1 < n$ , the value of$f[i][j]$ can be transferred from$f[i][j + 1]$ . If$nums[j + 1] \ge queries[f[i][j + 1]]$ , we can choose to delete$nums[j + 1]$ . Therefore, we have$f[i][j] = f[i][j + 1] + (nums[j + 1] \ge queries[f[i][j + 1]])$ . - If
$f[i][j] = m$ , we can directly return$m$ .
The final answer is
The time complexity is
class Solution:
def maximumProcessableQueries(self, nums: List[int], queries: List[int]) -> int:
n = len(nums)
f = [[0] * n for _ in range(n)]
m = len(queries)
for i in range(n):
for j in range(n - 1, i - 1, -1):
if i:
f[i][j] = max(
f[i][j], f[i - 1][j] + (nums[i - 1] >= queries[f[i - 1][j]])
)
if j + 1 < n:
f[i][j] = max(
f[i][j], f[i][j + 1] + (nums[j + 1] >= queries[f[i][j + 1]])
)
if f[i][j] == m:
return m
return max(f[i][i] + (nums[i] >= queries[f[i][i]]) for i in range(n))
class Solution {
public int maximumProcessableQueries(int[] nums, int[] queries) {
int n = nums.length;
int[][] f = new int[n][n];
int m = queries.length;
for (int i = 0; i < n; ++i) {
for (int j = n - 1; j >= i; --j) {
if (i > 0) {
f[i][j] = Math.max(
f[i][j], f[i - 1][j] + (nums[i - 1] >= queries[f[i - 1][j]] ? 1 : 0));
}
if (j + 1 < n) {
f[i][j] = Math.max(
f[i][j], f[i][j + 1] + (nums[j + 1] >= queries[f[i][j + 1]] ? 1 : 0));
}
if (f[i][j] == m) {
return m;
}
}
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = Math.max(ans, f[i][i] + (nums[i] >= queries[f[i][i]] ? 1 : 0));
}
return ans;
}
}
class Solution {
public:
int maximumProcessableQueries(vector<int>& nums, vector<int>& queries) {
int n = nums.size();
int f[n][n];
memset(f, 0, sizeof(f));
int m = queries.size();
for (int i = 0; i < n; ++i) {
for (int j = n - 1; j >= i; --j) {
if (i > 0) {
f[i][j] = max(f[i][j], f[i - 1][j] + (nums[i - 1] >= queries[f[i - 1][j]] ? 1 : 0));
}
if (j + 1 < n) {
f[i][j] = max(f[i][j], f[i][j + 1] + (nums[j + 1] >= queries[f[i][j + 1]] ? 1 : 0));
}
if (f[i][j] == m) {
return m;
}
}
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = max(ans, f[i][i] + (nums[i] >= queries[f[i][i]] ? 1 : 0));
}
return ans;
}
};
func maximumProcessableQueries(nums []int, queries []int) (ans int) {
n := len(nums)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
}
m := len(queries)
for i := 0; i < n; i++ {
for j := n - 1; j >= i; j-- {
if i > 0 {
t := 0
if nums[i-1] >= queries[f[i-1][j]] {
t = 1
}
f[i][j] = max(f[i][j], f[i-1][j]+t)
}
if j+1 < n {
t := 0
if nums[j+1] >= queries[f[i][j+1]] {
t = 1
}
f[i][j] = max(f[i][j], f[i][j+1]+t)
}
if f[i][j] == m {
return m
}
}
}
for i := 0; i < n; i++ {
t := 0
if nums[i] >= queries[f[i][i]] {
t = 1
}
ans = max(ans, f[i][i]+t)
}
return
}
function maximumProcessableQueries(nums: number[], queries: number[]): number {
const n = nums.length;
const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0));
const m = queries.length;
for (let i = 0; i < n; ++i) {
for (let j = n - 1; j >= i; --j) {
if (i > 0) {
f[i][j] = Math.max(
f[i][j],
f[i - 1][j] + (nums[i - 1] >= queries[f[i - 1][j]] ? 1 : 0),
);
}
if (j + 1 < n) {
f[i][j] = Math.max(
f[i][j],
f[i][j + 1] + (nums[j + 1] >= queries[f[i][j + 1]] ? 1 : 0),
);
}
if (f[i][j] == m) {
return m;
}
}
}
let ans = 0;
for (let i = 0; i < n; ++i) {
ans = Math.max(ans, f[i][i] + (nums[i] >= queries[f[i][i]] ? 1 : 0));
}
return ans;
}