comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
Easy |
1563 |
Biweekly Contest 120 Q1 |
|
You are given a 0-indexed array of positive integers nums
.
A subarray of nums
is called incremovable if nums
becomes strictly increasing on removing the subarray. For example, the subarray [3, 4]
is an incremovable subarray of [5, 3, 4, 6, 7]
because removing this subarray changes the array [5, 3, 4, 6, 7]
to [5, 6, 7]
which is strictly increasing.
Return the total number of incremovable subarrays of nums
.
Note that an empty array is considered strictly increasing.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,2,3,4] Output: 10 Explanation: The 10 incremovable subarrays are: [1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4], and [1,2,3,4], because on removing any one of these subarrays nums becomes strictly increasing. Note that you cannot select an empty subarray.
Example 2:
Input: nums = [6,5,7,8] Output: 7 Explanation: The 7 incremovable subarrays are: [5], [6], [5,7], [6,5], [5,7,8], [6,5,7] and [6,5,7,8]. It can be shown that there are only 7 incremovable subarrays in nums.
Example 3:
Input: nums = [8,7,6,6] Output: 3 Explanation: The 3 incremovable subarrays are: [8,7,6], [7,6,6], and [8,7,6,6]. Note that [8,7] is not an incremovable subarray because after removing [8,7] nums becomes [6,6], which is sorted in ascending order but not strictly increasing.
Constraints:
1 <= nums.length <= 50
1 <= nums[i] <= 50
According to the problem description, after removing a subarray, the remaining elements are strictly increasing. Therefore, there are several situations:
- The remaining elements only include the prefix of the array
$nums$ (which can be empty); - The remaining elements only include the suffix of the array
$nums$ ; - The remaining elements include both the prefix and the suffix of the array
$nums$ .
The second and third situations can be combined into one, that is, the remaining elements include the suffix of the array
- The remaining elements only include the prefix of the array
$nums$ (which can be empty); - The remaining elements include the suffix of the array
$nums$ .
First, consider the first situation, that is, the remaining elements only include the prefix of the array
-
$nums[i+1,...,n-1]$ ; -
$nums[i,...,n-1]$ ; -
$nums[i-1,...,n-1]$ ; -
$nums[i-2,...,n-1]$ ; -
$\cdots$ ; -
$nums[0,...,n-1]$ .
There are
Next, consider the second situation, that is, the remaining elements include the suffix of the array
The time complexity is
class Solution:
def incremovableSubarrayCount(self, nums: List[int]) -> int:
i, n = 0, len(nums)
while i + 1 < n and nums[i] < nums[i + 1]:
i += 1
if i == n - 1:
return n * (n + 1) // 2
ans = i + 2
j = n - 1
while j:
while i >= 0 and nums[i] >= nums[j]:
i -= 1
ans += i + 2
if nums[j - 1] >= nums[j]:
break
j -= 1
return ans
class Solution {
public int incremovableSubarrayCount(int[] nums) {
int i = 0, n = nums.length;
while (i + 1 < n && nums[i] < nums[i + 1]) {
++i;
}
if (i == n - 1) {
return n * (n + 1) / 2;
}
int ans = i + 2;
for (int j = n - 1; j > 0; --j) {
while (i >= 0 && nums[i] >= nums[j]) {
--i;
}
ans += i + 2;
if (nums[j - 1] >= nums[j]) {
break;
}
}
return ans;
}
}
class Solution {
public:
int incremovableSubarrayCount(vector<int>& nums) {
int i = 0, n = nums.size();
while (i + 1 < n && nums[i] < nums[i + 1]) {
++i;
}
if (i == n - 1) {
return n * (n + 1) / 2;
}
int ans = i + 2;
for (int j = n - 1; j > 0; --j) {
while (i >= 0 && nums[i] >= nums[j]) {
--i;
}
ans += i + 2;
if (nums[j - 1] >= nums[j]) {
break;
}
}
return ans;
}
};
func incremovableSubarrayCount(nums []int) int {
i, n := 0, len(nums)
for i+1 < n && nums[i] < nums[i+1] {
i++
}
if i == n-1 {
return n * (n + 1) / 2
}
ans := i + 2
for j := n - 1; j > 0; j-- {
for i >= 0 && nums[i] >= nums[j] {
i--
}
ans += i + 2
if nums[j-1] >= nums[j] {
break
}
}
return ans
}
function incremovableSubarrayCount(nums: number[]): number {
const n = nums.length;
let i = 0;
while (i + 1 < n && nums[i] < nums[i + 1]) {
i++;
}
if (i === n - 1) {
return (n * (n + 1)) / 2;
}
let ans = i + 2;
for (let j = n - 1; j; --j) {
while (i >= 0 && nums[i] >= nums[j]) {
--i;
}
ans += i + 2;
if (nums[j - 1] >= nums[j]) {
break;
}
}
return ans;
}