comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
Hard |
1984 |
Weekly Contest 375 Q4 |
|
You are given a 0-indexed array nums
consisting of positive integers.
A partition of an array into one or more contiguous subarrays is called good if no two subarrays contain the same number.
Return the total number of good partitions of nums
.
Since the answer may be large, return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4] Output: 8 Explanation: The 8 possible good partitions are: ([1], [2], [3], [4]), ([1], [2], [3,4]), ([1], [2,3], [4]), ([1], [2,3,4]), ([1,2], [3], [4]), ([1,2], [3,4]), ([1,2,3], [4]), and ([1,2,3,4]).
Example 2:
Input: nums = [1,1,1,1] Output: 1 Explanation: The only possible good partition is: ([1,1,1,1]).
Example 3:
Input: nums = [1,2,1,3] Output: 2 Explanation: The 2 possible good partitions are: ([1,2,1], [3]) and ([1,2,1,3]).
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
According to the problem description, we know that the same number must be in the same subarray. Therefore, we use a hash table
Next, we use an index
Then, we traverse the array
Finally, we consider the number of division schemes for
The time complexity is
class Solution:
def numberOfGoodPartitions(self, nums: List[int]) -> int:
last = {x: i for i, x in enumerate(nums)}
mod = 10**9 + 7
j, k = -1, 0
for i, x in enumerate(nums):
j = max(j, last[x])
k += i == j
return pow(2, k - 1, mod)
class Solution {
public int numberOfGoodPartitions(int[] nums) {
Map<Integer, Integer> last = new HashMap<>();
int n = nums.length;
for (int i = 0; i < n; ++i) {
last.put(nums[i], i);
}
final int mod = (int) 1e9 + 7;
int j = -1;
int k = 0;
for (int i = 0; i < n; ++i) {
j = Math.max(j, last.get(nums[i]));
k += i == j ? 1 : 0;
}
return qpow(2, k - 1, mod);
}
private int qpow(long a, int n, int mod) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
}
}
class Solution {
public:
int numberOfGoodPartitions(vector<int>& nums) {
unordered_map<int, int> last;
int n = nums.size();
for (int i = 0; i < n; ++i) {
last[nums[i]] = i;
}
const int mod = 1e9 + 7;
int j = -1, k = 0;
for (int i = 0; i < n; ++i) {
j = max(j, last[nums[i]]);
k += i == j;
}
auto qpow = [&](long long a, int n, int mod) {
long long ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
};
return qpow(2, k - 1, mod);
}
};
func numberOfGoodPartitions(nums []int) int {
qpow := func(a, n, mod int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
last := map[int]int{}
for i, x := range nums {
last[x] = i
}
const mod int = 1e9 + 7
j, k := -1, 0
for i, x := range nums {
j = max(j, last[x])
if i == j {
k++
}
}
return qpow(2, k-1, mod)
}
function numberOfGoodPartitions(nums: number[]): number {
const qpow = (a: number, n: number, mod: number) => {
let ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = Number((BigInt(ans) * BigInt(a)) % BigInt(mod));
}
a = Number((BigInt(a) * BigInt(a)) % BigInt(mod));
}
return ans;
};
const last: Map<number, number> = new Map();
const n = nums.length;
for (let i = 0; i < n; ++i) {
last.set(nums[i], i);
}
const mod = 1e9 + 7;
let [j, k] = [-1, 0];
for (let i = 0; i < n; ++i) {
j = Math.max(j, last.get(nums[i])!);
if (i === j) {
++k;
}
}
return qpow(2, k - 1, mod);
}