Skip to content

Latest commit

 

History

History
397 lines (352 loc) · 11.2 KB

File metadata and controls

397 lines (352 loc) · 11.2 KB
comments difficulty edit_url rating source tags
true
中等
2071
第 364 场周赛 Q3
数组
单调栈

English Version

题目描述

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。

你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i] 。

如果以下条件满足,我们称这些塔是 美丽 的:

  1. 1 <= heights[i] <= maxHeights[i]
  2. heights 是一个 山脉 数组。

如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山脉 数组:

  • 对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]
  • 对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]

请你返回满足 美丽塔 要求的方案中,高度和的最大值 。

 

示例 1:

输入:maxHeights = [5,3,4,1,1]
输出:13
解释:和最大的美丽塔方案为 heights = [5,3,3,1,1] ,这是一个美丽塔方案,因为:
- 1 <= heights[i] <= maxHeights[i]  
- heights 是个山脉数组,峰值在 i = 0 处。
13 是所有美丽塔方案中的最大高度和。

示例 2:

输入:maxHeights = [6,5,3,9,2,7]
输出:22
解释: 和最大的美丽塔方案为 heights = [3,3,3,9,2,2] ,这是一个美丽塔方案,因为:
- 1 <= heights[i] <= maxHeights[i]
- heights 是个山脉数组,峰值在 i = 3 处。
22 是所有美丽塔方案中的最大高度和。

示例 3:

输入:maxHeights = [3,2,5,5,2,3]
输出:18
解释:和最大的美丽塔方案为 heights = [2,2,5,5,2,2] ,这是一个美丽塔方案,因为:
- 1 <= heights[i] <= maxHeights[i]
- heights 是个山脉数组,最大值在 i = 2 处。
注意,在这个方案中,i = 3 也是一个峰值。
18 是所有美丽塔方案中的最大高度和。

 

提示:

  • 1 <= n == maxHeights <= 105
  • 1 <= maxHeights[i] <= 109

解法

方法一:动态规划 + 单调栈

我们定义 $f[i]$ 表示前 $i+1$ 座塔中,以最后一座塔作为最高塔的美丽塔方案的高度和。我们可以得到如下的状态转移方程:

$$ f[i]= \begin{cases} f[i-1]+heights[i],&\textit{if } heights[i]\geq heights[i-1]\\ heights[i]\times(i-j)+f[j],&\textit{if } heights[i]<heights[i-1] \end{cases} $$

其中 $j$ 是最后一座塔左边第一个高度小于等于 $heights[i]$ 的塔的下标。我们可以使用单调栈来维护这个下标。

我们可以使用类似的方法求出 $g[i]$,表示从右往左,以第 $i$ 座塔作为最高塔的美丽塔方案的高度和。最终答案即为 $f[i]+g[i]-heights[i]$ 的最大值。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $maxHeights$ 的长度。

Python3

class Solution:
    def maximumSumOfHeights(self, maxHeights: List[int]) -> int:
        n = len(maxHeights)
        stk = []
        left = [-1] * n
        for i, x in enumerate(maxHeights):
            while stk and maxHeights[stk[-1]] > x:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        right = [n] * n
        for i in range(n - 1, -1, -1):
            x = maxHeights[i]
            while stk and maxHeights[stk[-1]] >= x:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        f = [0] * n
        for i, x in enumerate(maxHeights):
            if i and x >= maxHeights[i - 1]:
                f[i] = f[i - 1] + x
            else:
                j = left[i]
                f[i] = x * (i - j) + (f[j] if j != -1 else 0)
        g = [0] * n
        for i in range(n - 1, -1, -1):
            if i < n - 1 and maxHeights[i] >= maxHeights[i + 1]:
                g[i] = g[i + 1] + maxHeights[i]
            else:
                j = right[i]
                g[i] = maxHeights[i] * (j - i) + (g[j] if j != n else 0)
        return max(a + b - c for a, b, c in zip(f, g, maxHeights))

Java

class Solution {
    public long maximumSumOfHeights(List<Integer> maxHeights) {
        int n = maxHeights.size();
        Deque<Integer> stk = new ArrayDeque<>();
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        for (int i = 0; i < n; ++i) {
            int x = maxHeights.get(i);
            while (!stk.isEmpty() && maxHeights.get(stk.peek()) > x) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            int x = maxHeights.get(i);
            while (!stk.isEmpty() && maxHeights.get(stk.peek()) >= x) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        long[] f = new long[n];
        long[] g = new long[n];
        for (int i = 0; i < n; ++i) {
            int x = maxHeights.get(i);
            if (i > 0 && x >= maxHeights.get(i - 1)) {
                f[i] = f[i - 1] + x;
            } else {
                int j = left[i];
                f[i] = 1L * x * (i - j) + (j >= 0 ? f[j] : 0);
            }
        }
        for (int i = n - 1; i >= 0; --i) {
            int x = maxHeights.get(i);
            if (i < n - 1 && x >= maxHeights.get(i + 1)) {
                g[i] = g[i + 1] + x;
            } else {
                int j = right[i];
                g[i] = 1L * x * (j - i) + (j < n ? g[j] : 0);
            }
        }
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = Math.max(ans, f[i] + g[i] - maxHeights.get(i));
        }
        return ans;
    }
}

C++

class Solution {
public:
    long long maximumSumOfHeights(vector<int>& maxHeights) {
        int n = maxHeights.size();
        stack<int> stk;
        vector<int> left(n, -1);
        vector<int> right(n, n);
        for (int i = 0; i < n; ++i) {
            int x = maxHeights[i];
            while (!stk.empty() && maxHeights[stk.top()] > x) {
                stk.pop();
            }
            if (!stk.empty()) {
                left[i] = stk.top();
            }
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; ~i; --i) {
            int x = maxHeights[i];
            while (!stk.empty() && maxHeights[stk.top()] >= x) {
                stk.pop();
            }
            if (!stk.empty()) {
                right[i] = stk.top();
            }
            stk.push(i);
        }
        long long f[n], g[n];
        for (int i = 0; i < n; ++i) {
            int x = maxHeights[i];
            if (i && x >= maxHeights[i - 1]) {
                f[i] = f[i - 1] + x;
            } else {
                int j = left[i];
                f[i] = 1LL * x * (i - j) + (j != -1 ? f[j] : 0);
            }
        }
        for (int i = n - 1; ~i; --i) {
            int x = maxHeights[i];
            if (i < n - 1 && x >= maxHeights[i + 1]) {
                g[i] = g[i + 1] + x;
            } else {
                int j = right[i];
                g[i] = 1LL * x * (j - i) + (j != n ? g[j] : 0);
            }
        }
        long long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = max(ans, f[i] + g[i] - maxHeights[i]);
        }
        return ans;
    }
};

Go

func maximumSumOfHeights(maxHeights []int) (ans int64) {
	n := len(maxHeights)
	stk := []int{}
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	for i, x := range maxHeights {
		for len(stk) > 0 && maxHeights[stk[len(stk)-1]] > x {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		x := maxHeights[i]
		for len(stk) > 0 && maxHeights[stk[len(stk)-1]] >= x {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	f := make([]int64, n)
	g := make([]int64, n)
	for i, x := range maxHeights {
		if i > 0 && x >= maxHeights[i-1] {
			f[i] = f[i-1] + int64(x)
		} else {
			j := left[i]
			f[i] = int64(x) * int64(i-j)
			if j != -1 {
				f[i] += f[j]
			}
		}
	}
	for i := n - 1; i >= 0; i-- {
		x := maxHeights[i]
		if i < n-1 && x >= maxHeights[i+1] {
			g[i] = g[i+1] + int64(x)
		} else {
			j := right[i]
			g[i] = int64(x) * int64(j-i)
			if j != n {
				g[i] += g[j]
			}
		}
	}
	for i, x := range maxHeights {
		ans = max(ans, f[i]+g[i]-int64(x))
	}
	return
}

TypeScript

function maximumSumOfHeights(maxHeights: number[]): number {
    const n = maxHeights.length;
    const stk: number[] = [];
    const left: number[] = Array(n).fill(-1);
    const right: number[] = Array(n).fill(n);
    for (let i = 0; i < n; ++i) {
        const x = maxHeights[i];
        while (stk.length && maxHeights[stk.at(-1)] > x) {
            stk.pop();
        }
        if (stk.length) {
            left[i] = stk.at(-1);
        }
        stk.push(i);
    }
    stk.length = 0;
    for (let i = n - 1; ~i; --i) {
        const x = maxHeights[i];
        while (stk.length && maxHeights[stk.at(-1)] >= x) {
            stk.pop();
        }
        if (stk.length) {
            right[i] = stk.at(-1);
        }
        stk.push(i);
    }
    const f: number[] = Array(n).fill(0);
    const g: number[] = Array(n).fill(0);
    for (let i = 0; i < n; ++i) {
        const x = maxHeights[i];
        if (i && x >= maxHeights[i - 1]) {
            f[i] = f[i - 1] + x;
        } else {
            const j = left[i];
            f[i] = x * (i - j) + (j >= 0 ? f[j] : 0);
        }
    }
    for (let i = n - 1; ~i; --i) {
        const x = maxHeights[i];
        if (i + 1 < n && x >= maxHeights[i + 1]) {
            g[i] = g[i + 1] + x;
        } else {
            const j = right[i];
            g[i] = x * (j - i) + (j < n ? g[j] : 0);
        }
    }
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        ans = Math.max(ans, f[i] + g[i] - maxHeights[i]);
    }
    return ans;
}