Skip to content

Latest commit

 

History

History
397 lines (335 loc) · 11.9 KB

File metadata and controls

397 lines (335 loc) · 11.9 KB
comments difficulty edit_url rating source tags
true
Hard
1810
Biweekly Contest 102 Q4
Graph
Design
Shortest Path
Heap (Priority Queue)

中文文档

Description

There is a directed weighted graph that consists of n nodes numbered from 0 to n - 1. The edges of the graph are initially represented by the given array edges where edges[i] = [fromi, toi, edgeCosti] meaning that there is an edge from fromi to toi with the cost edgeCosti.

Implement the Graph class:

  • Graph(int n, int[][] edges) initializes the object with n nodes and the given edges.
  • addEdge(int[] edge) adds an edge to the list of edges where edge = [from, to, edgeCost]. It is guaranteed that there is no edge between the two nodes before adding this one.
  • int shortestPath(int node1, int node2) returns the minimum cost of a path from node1 to node2. If no path exists, return -1. The cost of a path is the sum of the costs of the edges in the path.

 

Example 1:

Input
["Graph", "shortestPath", "shortestPath", "addEdge", "shortestPath"]
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
Output
[null, 6, -1, null, 6]

Explanation Graph g = new Graph(4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]); g.shortestPath(3, 2); // return 6. The shortest path from 3 to 2 in the first diagram above is 3 -> 0 -> 1 -> 2 with a total cost of 3 + 2 + 1 = 6. g.shortestPath(0, 3); // return -1. There is no path from 0 to 3. g.addEdge([1, 3, 4]); // We add an edge from node 1 to node 3, and we get the second diagram above. g.shortestPath(0, 3); // return 6. The shortest path from 0 to 3 now is 0 -> 1 -> 3 with a total cost of 2 + 4 = 6.

 

Constraints:

  • 1 <= n <= 100
  • 0 <= edges.length <= n * (n - 1)
  • edges[i].length == edge.length == 3
  • 0 <= fromi, toi, from, to, node1, node2 <= n - 1
  • 1 <= edgeCosti, edgeCost <= 106
  • There are no repeated edges and no self-loops in the graph at any point.
  • At most 100 calls will be made for addEdge.
  • At most 100 calls will be made for shortestPath.

Solutions

Solution 1: Dijsktra's Algorithm

In the initialization function, we first use the adjacency matrix $g$ to store the edge weights of the graph, where $g_{ij}$ represents the edge weight from node $i$ to node $j$. If there is no edge between $i$ and $j$, the value of $g_{ij}$ is $\infty$.

In the addEdge function, we update the value of $g_{ij}$ to $edge[2]$.

In the shortestPath function, we use Dijsktra's algorithm to find the shortest path from node $node1$ to node $node2$. Here, $dist[i]$ represents the shortest path from node $node1$ to node $i$, and $vis[i]$ indicates whether node $i$ has been visited. We initialize $dist[node1]$ to $0$, and the rest of $dist[i]$ are all $\infty$. Then we iterate $n$ times, each time finding the current unvisited node $t$ such that $dist[t]$ is the smallest. Then we mark node $t$ as visited, and then update the value of $dist[i]$ to $min(dist[i], dist[t] + g_{ti})$. Finally, we return $dist[node2]$. If $dist[node2]$ is $\infty$, it means that there is no path from node $node1$ to node $node2$, so we return $-1$.

The time complexity is $O(n^2 \times q)$, and the space complexity is $O(n^2)$. Where $n$ is the number of nodes, and $q$ is the number of calls to the shortestPath function.

Python3

class Graph:
    def __init__(self, n: int, edges: List[List[int]]):
        self.n = n
        self.g = [[inf] * n for _ in range(n)]
        for f, t, c in edges:
            self.g[f][t] = c

    def addEdge(self, edge: List[int]) -> None:
        f, t, c = edge
        self.g[f][t] = c

    def shortestPath(self, node1: int, node2: int) -> int:
        dist = [inf] * self.n
        dist[node1] = 0
        vis = [False] * self.n
        for _ in range(self.n):
            t = -1
            for j in range(self.n):
                if not vis[j] and (t == -1 or dist[t] > dist[j]):
                    t = j
            vis[t] = True
            for j in range(self.n):
                dist[j] = min(dist[j], dist[t] + self.g[t][j])
        return -1 if dist[node2] == inf else dist[node2]


# Your Graph object will be instantiated and called as such:
# obj = Graph(n, edges)
# obj.addEdge(edge)
# param_2 = obj.shortestPath(node1,node2)

Java

class Graph {
    private int n;
    private int[][] g;
    private final int inf = 1 << 29;

    public Graph(int n, int[][] edges) {
        this.n = n;
        g = new int[n][n];
        for (var f : g) {
            Arrays.fill(f, inf);
        }
        for (int[] e : edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f][t] = c;
        }
    }

    public void addEdge(int[] edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f][t] = c;
    }

    public int shortestPath(int node1, int node2) {
        int[] dist = new int[n];
        boolean[] vis = new boolean[n];
        Arrays.fill(dist, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * Graph obj = new Graph(n, edges);
 * obj.addEdge(edge);
 * int param_2 = obj.shortestPath(node1,node2);
 */

C++

class Graph {
public:
    Graph(int n, vector<vector<int>>& edges) {
        this->n = n;
        g = vector<vector<int>>(n, vector<int>(n, inf));
        for (auto& e : edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f][t] = c;
        }
    }

    void addEdge(vector<int> edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f][t] = c;
    }

    int shortestPath(int node1, int node2) {
        vector<bool> vis(n);
        vector<int> dist(n, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = min(dist[j], dist[t] + g[t][j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }

private:
    vector<vector<int>> g;
    int n;
    const int inf = 1 << 29;
};

/**
 * Your Graph object will be instantiated and called as such:
 * Graph* obj = new Graph(n, edges);
 * obj->addEdge(edge);
 * int param_2 = obj->shortestPath(node1,node2);
 */

Go

const inf = 1 << 29

type Graph struct {
	g [][]int
}

func Constructor(n int, edges [][]int) Graph {
	g := make([][]int, n)
	for i := range g {
		g[i] = make([]int, n)
		for j := range g[i] {
			g[i][j] = inf
		}
	}
	for _, e := range edges {
		f, t, c := e[0], e[1], e[2]
		g[f][t] = c
	}
	return Graph{g}
}

func (this *Graph) AddEdge(edge []int) {
	f, t, c := edge[0], edge[1], edge[2]
	this.g[f][t] = c
}

func (this *Graph) ShortestPath(node1 int, node2 int) int {
	n := len(this.g)
	dist := make([]int, n)
	for i := range dist {
		dist[i] = inf
	}
	vis := make([]bool, n)
	dist[node1] = 0
	for i := 0; i < n; i++ {
		t := -1
		for j := 0; j < n; j++ {
			if !vis[j] && (t == -1 || dist[t] > dist[j]) {
				t = j
			}
		}
		vis[t] = true
		for j := 0; j < n; j++ {
			dist[j] = min(dist[j], dist[t]+this.g[t][j])
		}
	}
	if dist[node2] >= inf {
		return -1
	}
	return dist[node2]
}

/**
 * Your Graph object will be instantiated and called as such:
 * obj := Constructor(n, edges);
 * obj.AddEdge(edge);
 * param_2 := obj.ShortestPath(node1,node2);
 */

TypeScript

class Graph {
    private g: number[][] = [];
    private inf: number = 1 << 29;

    constructor(n: number, edges: number[][]) {
        this.g = Array.from({ length: n }, () => Array(n).fill(this.inf));
        for (const [f, t, c] of edges) {
            this.g[f][t] = c;
        }
    }

    addEdge(edge: number[]): void {
        const [f, t, c] = edge;
        this.g[f][t] = c;
    }

    shortestPath(node1: number, node2: number): number {
        const n = this.g.length;
        const dist: number[] = new Array(n).fill(this.inf);
        dist[node1] = 0;
        const vis: boolean[] = new Array(n).fill(false);
        for (let i = 0; i < n; ++i) {
            let t = -1;
            for (let j = 0; j < n; ++j) {
                if (!vis[j] && (t === -1 || dist[j] < dist[t])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (let j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[t] + this.g[t][j]);
            }
        }
        return dist[node2] >= this.inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * var obj = new Graph(n, edges)
 * obj.addEdge(edge)
 * var param_2 = obj.shortestPath(node1,node2)
 */

C#

public class Graph {
    private int n;
    private int[,] g;
    private readonly int inf = 1 << 29;

    public Graph(int n, int[][] edges) {
        this.n = n;
        g = new int[n, n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i, j] = inf;
            }
        }
        foreach (var e in edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f, t] = c;
        }
    }

    public void AddEdge(int[] edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f, t] = c;
    }

    public int ShortestPath(int node1, int node2) {
        int[] dist = new int[n];
        bool[] vis = new bool[n];
        Array.Fill(dist, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.Min(dist[j], dist[t] + g[t, j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * Graph obj = new Graph(n, edges);
 * obj.AddEdge(edge);
 * int param_2 = obj.ShortestPath(node1,node2);
 */