comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2235 |
Biweekly Contest 95 Q4 |
|
You are given a 0-indexed integer array stations
of length n
, where stations[i]
represents the number of power stations in the ith
city.
Each power station can provide power to every city in a fixed range. In other words, if the range is denoted by r
, then a power station at city i
can provide power to all cities j
such that |i - j| <= r
and 0 <= i, j <= n - 1
.
- Note that
|x|
denotes absolute value. For example,|7 - 5| = 2
and|3 - 10| = 7
.
The power of a city is the total number of power stations it is being provided power from.
The government has sanctioned building k
more power stations, each of which can be built in any city, and have the same range as the pre-existing ones.
Given the two integers r
and k
, return the maximum possible minimum power of a city, if the additional power stations are built optimally.
Note that you can build the k
power stations in multiple cities.
Example 1:
Input: stations = [1,2,4,5,0], r = 1, k = 2 Output: 5 Explanation: One of the optimal ways is to install both the power stations at city 1. So stations will become [1,4,4,5,0]. - City 0 is provided by 1 + 4 = 5 power stations. - City 1 is provided by 1 + 4 + 4 = 9 power stations. - City 2 is provided by 4 + 4 + 5 = 13 power stations. - City 3 is provided by 5 + 4 = 9 power stations. - City 4 is provided by 5 + 0 = 5 power stations. So the minimum power of a city is 5. Since it is not possible to obtain a larger power, we return 5.
Example 2:
Input: stations = [4,4,4,4], r = 0, k = 3 Output: 4 Explanation: It can be proved that we cannot make the minimum power of a city greater than 4.
Constraints:
n == stations.length
1 <= n <= 105
0 <= stations[i] <= 105
0 <= r <= n - 1
0 <= k <= 109
According to the problem description, the minimum number of power stations increases as the value of
First, we use a difference array and prefix sum to calculate the initial number of power stations in each city, recording it in the array
Next, we define the left boundary of the binary search as
The implementation logic of the function
Traverse each city. If the number of power stations in the current city false
. Otherwise, after the traversal, return true
.
The time complexity is
class Solution:
def maxPower(self, stations: List[int], r: int, k: int) -> int:
def check(x, k):
d = [0] * (n + 1)
t = 0
for i in range(n):
t += d[i]
dist = x - (s[i] + t)
if dist > 0:
if k < dist:
return False
k -= dist
j = min(i + r, n - 1)
left, right = max(0, j - r), min(j + r, n - 1)
d[left] += dist
d[right + 1] -= dist
t += dist
return True
n = len(stations)
d = [0] * (n + 1)
for i, v in enumerate(stations):
left, right = max(0, i - r), min(i + r, n - 1)
d[left] += v
d[right + 1] -= v
s = list(accumulate(d))
left, right = 0, 1 << 40
while left < right:
mid = (left + right + 1) >> 1
if check(mid, k):
left = mid
else:
right = mid - 1
return left
class Solution {
private long[] s;
private long[] d;
private int n;
public long maxPower(int[] stations, int r, int k) {
n = stations.length;
d = new long[n + 1];
s = new long[n + 1];
for (int i = 0; i < n; ++i) {
int left = Math.max(0, i - r), right = Math.min(i + r, n - 1);
d[left] += stations[i];
d[right + 1] -= stations[i];
}
s[0] = d[0];
for (int i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
long left = 0, right = 1l << 40;
while (left < right) {
long mid = (left + right + 1) >>> 1;
if (check(mid, r, k)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
private boolean check(long x, int r, int k) {
Arrays.fill(d, 0);
long t = 0;
for (int i = 0; i < n; ++i) {
t += d[i];
long dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
int j = Math.min(i + r, n - 1);
int left = Math.max(0, j - r), right = Math.min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
}
}
class Solution {
public:
long long maxPower(vector<int>& stations, int r, int k) {
int n = stations.size();
long d[n + 1];
memset(d, 0, sizeof d);
for (int i = 0; i < n; ++i) {
int left = max(0, i - r), right = min(i + r, n - 1);
d[left] += stations[i];
d[right + 1] -= stations[i];
}
long s[n + 1];
s[0] = d[0];
for (int i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
auto check = [&](long x, int k) {
memset(d, 0, sizeof d);
long t = 0;
for (int i = 0; i < n; ++i) {
t += d[i];
long dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
int j = min(i + r, n - 1);
int left = max(0, j - r), right = min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
};
long left = 0, right = 1e12;
while (left < right) {
long mid = (left + right + 1) >> 1;
if (check(mid, k)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
};
func maxPower(stations []int, r int, k int) int64 {
n := len(stations)
d := make([]int, n+1)
s := make([]int, n+1)
for i, v := range stations {
left, right := max(0, i-r), min(i+r, n-1)
d[left] += v
d[right+1] -= v
}
s[0] = d[0]
for i := 1; i < n+1; i++ {
s[i] = s[i-1] + d[i]
}
check := func(x, k int) bool {
d := make([]int, n+1)
t := 0
for i := range stations {
t += d[i]
dist := x - (s[i] + t)
if dist > 0 {
if k < dist {
return false
}
k -= dist
j := min(i+r, n-1)
left, right := max(0, j-r), min(j+r, n-1)
d[left] += dist
d[right+1] -= dist
t += dist
}
}
return true
}
left, right := 0, 1<<40
for left < right {
mid := (left + right + 1) >> 1
if check(mid, k) {
left = mid
} else {
right = mid - 1
}
}
return int64(left)
}
function maxPower(stations: number[], r: number, k: number): number {
function check(x: bigint, k: bigint): boolean {
d.fill(0n);
let t = 0n;
for (let i = 0; i < n; ++i) {
t += d[i];
const dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
const j = Math.min(i + r, n - 1);
const left = Math.max(0, j - r);
const right = Math.min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
}
const n = stations.length;
const d: bigint[] = new Array(n + 1).fill(0n);
const s: bigint[] = new Array(n + 1).fill(0n);
for (let i = 0; i < n; ++i) {
const left = Math.max(0, i - r);
const right = Math.min(i + r, n - 1);
d[left] += BigInt(stations[i]);
d[right + 1] -= BigInt(stations[i]);
}
s[0] = d[0];
for (let i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
let left = 0n,
right = 1n << 40n;
while (left < right) {
const mid = (left + right + 1n) >> 1n;
if (check(mid, BigInt(k))) {
left = mid;
} else {
right = mid - 1n;
}
}
return Number(left);
}