Skip to content

Latest commit

 

History

History
190 lines (157 loc) · 4.16 KB

File metadata and controls

190 lines (157 loc) · 4.16 KB
comments difficulty edit_url tags
true
Medium
Math
Enumeration

中文文档

Description

You are given a positive integer n.

We call an integer k fair if the number of even digits in k is equal to the number of odd digits in it.

Return the smallest fair integer that is greater than or equal to n.

 

Example 1:

Input: n = 2
Output: 10
Explanation: The smallest fair integer that is greater than or equal to 2 is 10.
10 is fair because it has an equal number of even and odd digits (one odd digit and one even digit).

Example 2:

Input: n = 403
Output: 1001
Explanation: The smallest fair integer that is greater than or equal to 403 is 1001.
1001 is fair because it has an equal number of even and odd digits (two odd digits and two even digits).

 

Constraints:

  • 1 <= n <= 109

Solutions

Solution 1: Case Discussion

We denote the number of digits of $n$ as $k$, and the number of odd and even digits as $a$ and $b$ respectively.

  • If $a = b$, then $n$ itself is fair, and we can directly return $n$;
  • Otherwise, if $k$ is odd, we can find the smallest fair number with $k+1$ digits, in the form of 10000111. If $k$ is even, we can directly brute force closestFair(n+1).

The time complexity is $O(\sqrt{n} \times \log_{10} n)$.

Python3

class Solution:
    def closestFair(self, n: int) -> int:
        a = b = k = 0
        t = n
        while t:
            if (t % 10) & 1:
                a += 1
            else:
                b += 1
            t //= 10
            k += 1
        if k & 1:
            x = 10**k
            y = int('1' * (k >> 1) or '0')
            return x + y
        if a == b:
            return n
        return self.closestFair(n + 1)

Java

class Solution {
    public int closestFair(int n) {
        int a = 0, b = 0;
        int k = 0, t = n;
        while (t > 0) {
            if ((t % 10) % 2 == 1) {
                ++a;
            } else {
                ++b;
            }
            t /= 10;
            ++k;
        }
        if (k % 2 == 1) {
            int x = (int) Math.pow(10, k);
            int y = 0;
            for (int i = 0; i < k >> 1; ++i) {
                y = y * 10 + 1;
            }
            return x + y;
        }
        if (a == b) {
            return n;
        }
        return closestFair(n + 1);
    }
}

C++

class Solution {
public:
    int closestFair(int n) {
        int a = 0, b = 0;
        int t = n, k = 0;
        while (t) {
            if ((t % 10) & 1) {
                ++a;
            } else {
                ++b;
            }
            ++k;
            t /= 10;
        }
        if (a == b) {
            return n;
        }
        if (k % 2 == 1) {
            int x = pow(10, k);
            int y = 0;
            for (int i = 0; i < k >> 1; ++i) {
                y = y * 10 + 1;
            }
            return x + y;
        }
        return closestFair(n + 1);
    }
};

Go

func closestFair(n int) int {
	a, b := 0, 0
	t, k := n, 0
	for t > 0 {
		if (t%10)%2 == 1 {
			a++
		} else {
			b++
		}
		k++
		t /= 10
	}
	if a == b {
		return n
	}
	if k%2 == 1 {
		x := int(math.Pow(10, float64(k)))
		y := 0
		for i := 0; i < k>>1; i++ {
			y = y*10 + 1
		}
		return x + y
	}
	return closestFair(n + 1)
}