Skip to content

Latest commit

 

History

History
245 lines (205 loc) · 6.69 KB

File metadata and controls

245 lines (205 loc) · 6.69 KB
comments difficulty edit_url tags
true
困难
数组
动态规划
单调栈

English Version

题目描述

给定一个长度为 n 下标从 0 开始 的整数数组 books,其中 books[i] 表示书架的第 i 个书架上的书的数量。

你要从书架 lr 的一个 连续 的部分中取书,其中 0 <= l <= r < n。对于 l <= i < r 范围内的每个索引 i,你从书架 i 取书的数量必须 严格小于 你从书架 i + 1 取书的数量。

返回你能从书架上拿走的书的 最大 数量。

 

示例 1:

输入: books = [8,5,2,7,9]
输出: 19
解释:
- 从书架 1 上取 1 本书。
- 从书架 2 上取 2 本书。
- 从书架 3 上取 7 本书
- 从书架 4 上取 9 本书
你已经拿了19本书,所以返回 19。
可以证明 19 本是你所能拿走的书的最大数量。

示例 2:

输入: books = [7,0,3,4,5]
输出: 12
解释:
- 从书架 2 上取 3 本书。
- 从书架 3 上取 4 本书。
- 从书架 4 上取 5 本书。
你已经拿了 12 本书,所以返回 12。
可以证明 12 本是你所能拿走的书的最大数量。

示例 3:

输入: books = [8,2,3,7,3,4,0,1,4,3]
输出: 13
解释:
- 从书架 0 上取 1 本书。
- 从书架 1 上取 2 本书。
- 从书架 2 上取 3 本书。
- 从书架 3 上取 7 本书。
你已经拿了 13 本书,所以返回 13。
可以证明 13 本是你所能拿走的书的最大数量。

 

提示:

  • 1 <= books.length <= 105
  • 0 <= books[i] <= 105

解法

方法一:单调栈 + 动态规划

我们定义 $dp[i]$ 表示以 $books[i]$ 结尾时能取走的书的最大数量。

若从 $i$$0$ 可以取成一个公差为 $1$ 的等差数列,那么 $dp[i]$ 可以直接通过等差数列求和算出。

若从 $i$$0$ 不能取成一个公差为 $-1$ 的等差数列,即这个规律在某个 $j$ 处断掉了($0 \le j \lt i$),那么一定有 $books[j] \lt books[i] - (i-j)$,也即 $books[j] - j \lt books[i] - i$,利用单调栈在新数组 $books[i] - i$ 的每个位置,找到左边第一个比它严格小的数的位置,可以求出符合题意的 $j$,此时 $dp[i]=dp[j] + \sum_{k=j+1}^{i} (books[k]-k)$

答案为 $\max_{i=0}^{n-1} dp[i]$

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组长度。

Python3

class Solution:
    def maximumBooks(self, books: List[int]) -> int:
        nums = [v - i for i, v in enumerate(books)]
        n = len(nums)
        left = [-1] * n
        stk = []
        for i, v in enumerate(nums):
            while stk and nums[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        ans = 0
        dp = [0] * n
        dp[0] = books[0]
        for i, v in enumerate(books):
            j = left[i]
            cnt = min(v, i - j)
            u = v - cnt + 1
            s = (u + v) * cnt // 2
            dp[i] = s + (0 if j == -1 else dp[j])
            ans = max(ans, dp[i])
        return ans

Java

class Solution {
    public long maximumBooks(int[] books) {
        int n = books.length;
        int[] nums = new int[n];
        for (int i = 0; i < n; ++i) {
            nums[i] = books[i] - i;
        }
        int[] left = new int[n];
        Arrays.fill(left, -1);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        long ans = 0;
        long[] dp = new long[n];
        dp[0] = books[0];
        for (int i = 0; i < n; ++i) {
            int j = left[i];
            int v = books[i];
            int cnt = Math.min(v, i - j);
            int u = v - cnt + 1;
            long s = (long) (u + v) * cnt / 2;
            dp[i] = s + (j == -1 ? 0 : dp[j]);
            ans = Math.max(ans, dp[i]);
        }
        return ans;
    }
}

C++

using ll = long long;

class Solution {
public:
    long long maximumBooks(vector<int>& books) {
        int n = books.size();
        vector<int> nums(n);
        for (int i = 0; i < n; ++i) nums[i] = books[i] - i;
        vector<int> left(n, -1);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && nums[stk.top()] >= nums[i]) stk.pop();
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        vector<ll> dp(n);
        dp[0] = books[0];
        ll ans = 0;
        for (int i = 0; i < n; ++i) {
            int v = books[i];
            int j = left[i];
            int cnt = min(v, i - j);
            int u = v - cnt + 1;
            ll s = 1ll * (u + v) * cnt / 2;
            dp[i] = s + (j == -1 ? 0 : dp[j]);
            ans = max(ans, dp[i]);
        }
        return ans;
    }
};

Go

func maximumBooks(books []int) int64 {
	n := len(books)
	nums := make([]int, n)
	left := make([]int, n)
	for i, v := range books {
		nums[i] = v - i
		left[i] = -1
	}
	stk := []int{}
	for i, v := range nums {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	dp := make([]int, n)
	dp[0] = books[0]
	ans := 0
	for i, v := range books {
		j := left[i]
		cnt := min(v, i-j)
		u := v - cnt + 1
		s := (u + v) * cnt / 2
		dp[i] = s
		if j != -1 {
			dp[i] += dp[j]
		}
		ans = max(ans, dp[i])
	}
	return int64(ans)
}