Skip to content

Latest commit

 

History

History
277 lines (239 loc) · 8 KB

File metadata and controls

277 lines (239 loc) · 8 KB
comments difficulty edit_url tags
true
Medium
Stack
Graph
Array
Dynamic Programming
Shortest Path
Monotonic Stack

中文文档

Description

You are given a 0-indexed integer array nums of length n. You are initially standing at index 0. You can jump from index i to index j where i < j if:

  • nums[i] <= nums[j] and nums[k] < nums[i] for all indexes k in the range i < k < j, or
  • nums[i] > nums[j] and nums[k] >= nums[i] for all indexes k in the range i < k < j.

You are also given an integer array costs of length n where costs[i] denotes the cost of jumping to index i.

Return the minimum cost to jump to the index n - 1.

 

Example 1:

Input: nums = [3,2,4,4,1], costs = [3,7,6,4,2]
Output: 8
Explanation: You start at index 0.
- Jump to index 2 with a cost of costs[2] = 6.
- Jump to index 4 with a cost of costs[4] = 2.
The total cost is 8. It can be proven that 8 is the minimum cost needed.
Two other possible paths are from index 0 -> 1 -> 4 and index 0 -> 2 -> 3 -> 4.
These have a total cost of 9 and 12, respectively.

Example 2:

Input: nums = [0,1,2], costs = [1,1,1]
Output: 2
Explanation: Start at index 0.
- Jump to index 1 with a cost of costs[1] = 1.
- Jump to index 2 with a cost of costs[2] = 1.
The total cost is 2. Note that you cannot jump directly from index 0 to index 2 because nums[0] <= nums[1].

 

Constraints:

  • n == nums.length == costs.length
  • 1 <= n <= 105
  • 0 <= nums[i], costs[i] <= 105

Solutions

Solution 1: Monotonic Stack + Dynamic Programming

According to the problem description, we need to find the next position $j$ where $\textit{nums}[j]$ is greater than or equal to $\textit{nums}[i]$, and the next position $j$ where $\textit{nums}[j]$ is less than $\textit{nums}[i]$. We can use a monotonic stack to find these two positions in $O(n)$ time, and then construct an adjacency list $g$, where $g[i]$ represents the indices that index $i$ can jump to.

Then we use dynamic programming to find the minimum cost. Let $f[i]$ represent the minimum cost to jump to index $i$. Initially, $f[0] = 0$ and the rest $f[i] = \infty$. We enumerate the indices $i$ from small to large. For each $i$, we enumerate each index $j$ in $g[i]$ and perform the state transition $f[j] = \min(f[j], f[i] + \textit{costs}[j])$. The answer is $f[n - 1]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

Python3

class Solution:
    def minCost(self, nums: List[int], costs: List[int]) -> int:
        n = len(nums)
        g = defaultdict(list)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] < nums[i]:
                stk.pop()
            if stk:
                g[i].append(stk[-1])
            stk.append(i)

        stk = []
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] >= nums[i]:
                stk.pop()
            if stk:
                g[i].append(stk[-1])
            stk.append(i)

        f = [inf] * n
        f[0] = 0
        for i in range(n):
            for j in g[i]:
                f[j] = min(f[j], f[i] + costs[j])
        return f[n - 1]

Java

class Solution {
    public long minCost(int[] nums, int[] costs) {
        int n = nums.length;
        List<Integer>[] g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] < nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                g[i].add(stk.peek());
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                g[i].add(stk.peek());
            }
            stk.push(i);
        }
        long[] f = new long[n];
        Arrays.fill(f, 1L << 60);
        f[0] = 0;
        for (int i = 0; i < n; ++i) {
            for (int j : g[i]) {
                f[j] = Math.min(f[j], f[i] + costs[j]);
            }
        }
        return f[n - 1];
    }
}

C++

class Solution {
public:
    long long minCost(vector<int>& nums, vector<int>& costs) {
        int n = nums.size();
        vector<int> g[n];
        stack<int> stk;
        for (int i = n - 1; ~i; --i) {
            while (!stk.empty() && nums[stk.top()] < nums[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                g[i].push_back(stk.top());
            }
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; ~i; --i) {
            while (!stk.empty() && nums[stk.top()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                g[i].push_back(stk.top());
            }
            stk.push(i);
        }
        vector<long long> f(n, 1e18);
        f[0] = 0;
        for (int i = 0; i < n; ++i) {
            for (int j : g[i]) {
                f[j] = min(f[j], f[i] + costs[j]);
            }
        }
        return f[n - 1];
    }
};

Go

func minCost(nums []int, costs []int) int64 {
	n := len(nums)
	g := make([][]int, n)
	stk := []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && nums[stk[len(stk)-1]] < nums[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			g[i] = append(g[i], stk[len(stk)-1])
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= nums[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			g[i] = append(g[i], stk[len(stk)-1])
		}
		stk = append(stk, i)
	}
	f := make([]int64, n)
	for i := 1; i < n; i++ {
		f[i] = math.MaxInt64
	}
	for i := 0; i < n; i++ {
		for _, j := range g[i] {
			f[j] = min(f[j], f[i]+int64(costs[j]))
		}
	}
	return f[n-1]
}

TypeScript

function minCost(nums: number[], costs: number[]): number {
    const n = nums.length;
    const g: number[][] = Array.from({ length: n }, () => []);
    const stk: number[] = [];
    for (let i = n - 1; i >= 0; --i) {
        while (stk.length && nums[stk[stk.length - 1]] < nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            g[i].push(stk[stk.length - 1]);
        }
        stk.push(i);
    }
    stk.length = 0;
    for (let i = n - 1; i >= 0; --i) {
        while (stk.length && nums[stk[stk.length - 1]] >= nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            g[i].push(stk[stk.length - 1]);
        }
        stk.push(i);
    }
    const f: number[] = Array.from({ length: n }, () => Infinity);
    f[0] = 0;
    for (let i = 0; i < n; ++i) {
        for (const j of g[i]) {
            f[j] = Math.min(f[j], f[i] + costs[j]);
        }
    }
    return f[n - 1];
}