comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1685 |
Weekly Contest 288 Q3 |
|
You are given an array of non-negative integers nums
and an integer k
. In one operation, you may choose any element from nums
and increment it by 1
.
Return the maximum product of nums
after at most k
operations. Since the answer may be very large, return it modulo 109 + 7
. Note that you should maximize the product before taking the modulo.
Example 1:
Input: nums = [0,4], k = 5 Output: 20 Explanation: Increment the first number 5 times. Now nums = [5, 4], with a product of 5 * 4 = 20. It can be shown that 20 is maximum product possible, so we return 20. Note that there may be other ways to increment nums to have the maximum product.
Example 2:
Input: nums = [6,3,3,2], k = 2 Output: 216 Explanation: Increment the second number 1 time and increment the fourth number 1 time. Now nums = [6, 4, 3, 3], with a product of 6 * 4 * 3 * 3 = 216. It can be shown that 216 is maximum product possible, so we return 216. Note that there may be other ways to increment nums to have the maximum product.
Constraints:
1 <= nums.length, k <= 105
0 <= nums[i] <= 106
According to the problem description, to maximize the product, we need to increase the smaller numbers as much as possible. Therefore, we can use a min-heap to maintain the array
The time complexity is
class Solution:
def maximumProduct(self, nums: List[int], k: int) -> int:
heapify(nums)
for _ in range(k):
heapreplace(nums, nums[0] + 1)
mod = 10**9 + 7
return reduce(lambda x, y: x * y % mod, nums)
class Solution {
public int maximumProduct(int[] nums, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>();
for (int x : nums) {
pq.offer(x);
}
while (k-- > 0) {
pq.offer(pq.poll() + 1);
}
final int mod = (int) 1e9 + 7;
long ans = 1;
for (int x : pq) {
ans = (ans * x) % mod;
}
return (int) ans;
}
}
class Solution {
public:
int maximumProduct(vector<int>& nums, int k) {
priority_queue<int, vector<int>, greater<int>> pq;
for (int x : nums) {
pq.push(x);
}
while (k-- > 0) {
int smallest = pq.top();
pq.pop();
pq.push(smallest + 1);
}
const int mod = 1e9 + 7;
long long ans = 1;
while (!pq.empty()) {
ans = (ans * pq.top()) % mod;
pq.pop();
}
return static_cast<int>(ans);
}
};
func maximumProduct(nums []int, k int) int {
h := hp{nums}
for heap.Init(&h); k > 0; k-- {
h.IntSlice[0]++
heap.Fix(&h, 0)
}
ans := 1
for _, x := range nums {
ans = (ans * x) % (1e9 + 7)
}
return ans
}
type hp struct{ sort.IntSlice }
func (hp) Push(any) {}
func (hp) Pop() (_ any) { return }
function maximumProduct(nums: number[], k: number): number {
const pq = new MinPriorityQueue();
nums.forEach(x => pq.enqueue(x));
while (k--) {
const x = pq.dequeue().element;
pq.enqueue(x + 1);
}
let ans = 1;
const mod = 10 ** 9 + 7;
while (!pq.isEmpty()) {
ans = (ans * pq.dequeue().element) % mod;
}
return ans;
}
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var maximumProduct = function (nums, k) {
const pq = new MinPriorityQueue();
nums.forEach(x => pq.enqueue(x));
while (k--) {
const x = pq.dequeue().element;
pq.enqueue(x + 1);
}
let ans = 1;
const mod = 10 ** 9 + 7;
while (!pq.isEmpty()) {
ans = (ans * pq.dequeue().element) % mod;
}
return ans;
};