Skip to content

Latest commit

 

History

History
197 lines (155 loc) · 5.08 KB

File metadata and controls

197 lines (155 loc) · 5.08 KB
comments difficulty edit_url rating source tags
true
Easy
1365
Weekly Contest 288 Q1
Sorting
Heap (Priority Queue)

中文文档

Description

You are given a positive integer num. You may swap any two digits of num that have the same parity (i.e. both odd digits or both even digits).

Return the largest possible value of num after any number of swaps.

 

Example 1:

Input: num = 1234
Output: 3412
Explanation: Swap the digit 3 with the digit 1, this results in the number 3214.
Swap the digit 2 with the digit 4, this results in the number 3412.
Note that there may be other sequences of swaps but it can be shown that 3412 is the largest possible number.
Also note that we may not swap the digit 4 with the digit 1 since they are of different parities.

Example 2:

Input: num = 65875
Output: 87655
Explanation: Swap the digit 8 with the digit 6, this results in the number 85675.
Swap the first digit 5 with the digit 7, this results in the number 87655.
Note that there may be other sequences of swaps but it can be shown that 87655 is the largest possible number.

 

Constraints:

  • 1 <= num <= 109

Solutions

Solution 1: Counting

We can use an array $\textit{cnt}$ of length $10$ to count the occurrences of each digit in the integer $\textit{num}$. We also use an index array $\textit{idx}$ to record the largest available even and odd digits, initially set to $[8, 9]$.

Next, we traverse each digit of the integer $\textit{num}$. If the digit is odd, we take the digit corresponding to index $1$ in $\textit{idx}$; otherwise, we take the digit corresponding to index $0$. If the count of the digit is $0$, we decrement the digit by $2$ and continue checking until we find a digit that meets the condition. Then, we update the answer and the count of the digit, and continue traversing until we have processed all digits of the integer $\textit{num}$.

The time complexity is $O(\log \textit{num})$, and the space complexity is $O(\log \textit{num})$.

Python3

class Solution:
    def largestInteger(self, num: int) -> int:
        nums = [int(c) for c in str(num)]
        cnt = Counter(nums)
        idx = [8, 9]
        ans = 0
        for x in nums:
            while cnt[idx[x & 1]] == 0:
                idx[x & 1] -= 2
            ans = ans * 10 + idx[x & 1]
            cnt[idx[x & 1]] -= 1
        return ans

Java

class Solution {
    public int largestInteger(int num) {
        char[] s = String.valueOf(num).toCharArray();
        int[] cnt = new int[10];
        for (char c : s) {
            ++cnt[c - '0'];
        }
        int[] idx = {8, 9};
        int ans = 0;
        for (char c : s) {
            int x = c - '0';
            while (cnt[idx[x & 1]] == 0) {
                idx[x & 1] -= 2;
            }
            ans = ans * 10 + idx[x & 1];
            cnt[idx[x & 1]]--;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int largestInteger(int num) {
        string s = to_string(num);
        int cnt[10] = {0};
        for (char c : s) {
            cnt[c - '0']++;
        }
        int idx[2] = {8, 9};
        int ans = 0;
        for (char c : s) {
            int x = c - '0';
            while (cnt[idx[x & 1]] == 0) {
                idx[x & 1] -= 2;
            }
            ans = ans * 10 + idx[x & 1];
            cnt[idx[x & 1]]--;
        }
        return ans;
    }
};

Go

func largestInteger(num int) int {
	s := []byte(fmt.Sprint(num))
	cnt := [10]int{}

	for _, c := range s {
		cnt[c-'0']++
	}

	idx := [2]int{8, 9}
	ans := 0

	for _, c := range s {
		x := int(c - '0')
		for cnt[idx[x&1]] == 0 {
			idx[x&1] -= 2
		}
		ans = ans*10 + idx[x&1]
		cnt[idx[x&1]]--
	}

	return ans
}

TypeScript

function largestInteger(num: number): number {
    const s = num.toString().split('');
    const cnt = Array(10).fill(0);

    for (const c of s) {
        cnt[+c]++;
    }

    const idx = [8, 9];
    let ans = 0;

    for (const c of s) {
        const x = +c;
        while (cnt[idx[x % 2]] === 0) {
            idx[x % 2] -= 2;
        }
        ans = ans * 10 + idx[x % 2];
        cnt[idx[x % 2]]--;
    }

    return ans;
}