Skip to content

Latest commit

 

History

History
211 lines (170 loc) · 4.91 KB

File metadata and controls

211 lines (170 loc) · 4.91 KB
comments difficulty edit_url tags
true
Medium
Array
Prefix Sum

中文文档

Description

You are given a 0-indexed integer array nums of length n.

The sum score of nums at an index i where 0 <= i < n is the maximum of:

  • The sum of the first i + 1 elements of nums.
  • The sum of the last n - i elements of nums.

Return the maximum sum score of nums at any index.

 

Example 1:

Input: nums = [4,3,-2,5]
Output: 10
Explanation:
The sum score at index 0 is max(4, 4 + 3 + -2 + 5) = max(4, 10) = 10.
The sum score at index 1 is max(4 + 3, 3 + -2 + 5) = max(7, 6) = 7.
The sum score at index 2 is max(4 + 3 + -2, -2 + 5) = max(5, 3) = 5.
The sum score at index 3 is max(4 + 3 + -2 + 5, 5) = max(10, 5) = 10.
The maximum sum score of nums is 10.

Example 2:

Input: nums = [-3,-5]
Output: -3
Explanation:
The sum score at index 0 is max(-3, -3 + -5) = max(-3, -8) = -3.
The sum score at index 1 is max(-3 + -5, -5) = max(-8, -5) = -5.
The maximum sum score of nums is -3.

 

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • -105 <= nums[i] <= 105

Solutions

Solution 1: Prefix Sum

We can use two variables $l$ and $r$ to represent the prefix sum and suffix sum of the array, respectively. Initially, $l = 0$ and $r = \sum_{i=0}^{n-1} \textit{nums}[i]$.

Next, we traverse the array $\textit{nums}$. For each element $x$, we add $x$ to $l$ and update the answer $\textit{ans} = \max(\textit{ans}, l, r)$, then subtract $x$ from $r$.

After the traversal, return the answer $\textit{ans}$.

The time complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. The space complexity is $O(1)$.

Python3

class Solution:
    def maximumSumScore(self, nums: List[int]) -> int:
        l, r = 0, sum(nums)
        ans = -inf
        for x in nums:
            l += x
            ans = max(ans, l, r)
            r -= x
        return ans

Java

class Solution {
    public long maximumSumScore(int[] nums) {
        long l = 0, r = 0;
        for (int x : nums) {
            r += x;
        }
        long ans = Long.MIN_VALUE;
        for (int x : nums) {
            l += x;
            ans = Math.max(ans, Math.max(l, r));
            r -= x;
        }
        return ans;
    }
}

C++

class Solution {
public:
    long long maximumSumScore(vector<int>& nums) {
        long long l = 0, r = accumulate(nums.begin(), nums.end(), 0LL);
        long long ans = -1e18;
        for (int x : nums) {
            l += x;
            ans = max({ans, l, r});
            r -= x;
        }
        return ans;
    }
};

Go

func maximumSumScore(nums []int) int64 {
	l, r := 0, 0
	for _, x := range nums {
		r += x
	}
	ans := math.MinInt64
	for _, x := range nums {
		l += x
		ans = max(ans, max(l, r))
		r -= x
	}
	return int64(ans)
}

TypeScript

function maximumSumScore(nums: number[]): number {
    let l = 0;
    let r = nums.reduce((a, b) => a + b, 0);
    let ans = -Infinity;
    for (const x of nums) {
        l += x;
        ans = Math.max(ans, l, r);
        r -= x;
    }
    return ans;
}

Rust

impl Solution {
    pub fn maximum_sum_score(nums: Vec<i32>) -> i64 {
        let mut l = 0;
        let mut r: i64 = nums.iter().map(|&x| x as i64).sum();
        let mut ans = std::i64::MIN;
        for &x in &nums {
            l += x as i64;
            ans = ans.max(l).max(r);
            r -= x as i64;
        }
        ans
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number}
 */
var maximumSumScore = function (nums) {
    let l = 0;
    let r = nums.reduce((a, b) => a + b, 0);
    let ans = -Infinity;
    for (const x of nums) {
        l += x;
        ans = Math.max(ans, l, r);
        r -= x;
    }
    return ans;
};