Skip to content

Latest commit

 

History

History
280 lines (244 loc) · 9 KB

File metadata and controls

280 lines (244 loc) · 9 KB
comments difficulty edit_url rating source tags
true
Medium
1868
Weekly Contest 285 Q3
Bit Manipulation
Array
Backtracking
Enumeration

中文文档

Description

Alice and Bob are opponents in an archery competition. The competition has set the following rules:

  1. Alice first shoots numArrows arrows and then Bob shoots numArrows arrows.
  2. The points are then calculated as follows:
    1. The target has integer scoring sections ranging from 0 to 11 inclusive.
    2. For each section of the target with score k (in between 0 to 11), say Alice and Bob have shot ak and bk arrows on that section respectively. If ak >= bk, then Alice takes k points. If ak < bk, then Bob takes k points.
    3. However, if ak == bk == 0, then nobody takes k points.
  • For example, if Alice and Bob both shot 2 arrows on the section with score 11, then Alice takes 11 points. On the other hand, if Alice shot 0 arrows on the section with score 11 and Bob shot 2 arrows on that same section, then Bob takes 11 points.

You are given the integer numArrows and an integer array aliceArrows of size 12, which represents the number of arrows Alice shot on each scoring section from 0 to 11. Now, Bob wants to maximize the total number of points he can obtain.

Return the array bobArrows which represents the number of arrows Bob shot on each scoring section from 0 to 11. The sum of the values in bobArrows should equal numArrows.

If there are multiple ways for Bob to earn the maximum total points, return any one of them.

 

Example 1:

Input: numArrows = 9, aliceArrows = [1,1,0,1,0,0,2,1,0,1,2,0]
Output: [0,0,0,0,1,1,0,0,1,2,3,1]
Explanation: The table above shows how the competition is scored. 
Bob earns a total point of 4 + 5 + 8 + 9 + 10 + 11 = 47.
It can be shown that Bob cannot obtain a score higher than 47 points.

Example 2:

Input: numArrows = 3, aliceArrows = [0,0,1,0,0,0,0,0,0,0,0,2]
Output: [0,0,0,0,0,0,0,0,1,1,1,0]
Explanation: The table above shows how the competition is scored.
Bob earns a total point of 8 + 9 + 10 = 27.
It can be shown that Bob cannot obtain a score higher than 27 points.

 

Constraints:

  • 1 <= numArrows <= 105
  • aliceArrows.length == bobArrows.length == 12
  • 0 <= aliceArrows[i], bobArrows[i] <= numArrows
  • sum(aliceArrows[i]) == numArrows

Solutions

Solution 1

Python3

class Solution:
    def maximumBobPoints(self, numArrows: int, aliceArrows: List[int]) -> List[int]:
        n = len(aliceArrows)
        state = 0
        mx = -1
        for mask in range(1 << n):
            cnt = points = 0
            for i, alice in enumerate(aliceArrows):
                if (mask >> i) & 1:
                    cnt += alice + 1
                    points += i
            if cnt <= numArrows and mx < points:
                state = mask
                mx = points
        ans = [0] * n
        for i, alice in enumerate(aliceArrows):
            if (state >> i) & 1:
                ans[i] = alice + 1
                numArrows -= ans[i]
        ans[0] = numArrows
        return ans

Java

class Solution {
    public int[] maximumBobPoints(int numArrows, int[] aliceArrows) {
        int n = aliceArrows.length;
        int mx = -1;
        int state = 0;
        for (int mask = 1; mask < 1 << n; ++mask) {
            int cnt = 0, points = 0;
            for (int i = 0; i < n; ++i) {
                if (((mask >> i) & 1) == 1) {
                    cnt += aliceArrows[i] + 1;
                    points += i;
                }
            }
            if (cnt <= numArrows && mx < points) {
                state = mask;
                mx = points;
            }
        }
        int[] ans = new int[n];
        for (int i = 0; i < n; ++i) {
            if (((state >> i) & 1) == 1) {
                ans[i] = aliceArrows[i] + 1;
                numArrows -= ans[i];
            }
        }
        ans[0] += numArrows;
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> maximumBobPoints(int numArrows, vector<int>& aliceArrows) {
        int n = aliceArrows.size();
        int state = 0, mx = -1;
        for (int mask = 1; mask < 1 << n; ++mask) {
            int cnt = 0, points = 0;
            for (int i = 0; i < n; ++i) {
                if ((mask >> i) & 1) {
                    cnt += aliceArrows[i] + 1;
                    points += i;
                }
            }
            if (cnt <= numArrows && mx < points) {
                state = mask;
                mx = points;
            }
        }
        vector<int> ans(n);
        for (int i = 0; i < n; ++i) {
            if ((state >> i) & 1) {
                ans[i] = aliceArrows[i] + 1;
                numArrows -= ans[i];
            }
        }
        ans[0] += numArrows;
        return ans;
    }
};

Go

func maximumBobPoints(numArrows int, aliceArrows []int) []int {
	n := len(aliceArrows)
	state, mx := 0, -1
	for mask := 1; mask < 1<<n; mask++ {
		cnt, points := 0, 0
		for i, alice := range aliceArrows {
			if (mask>>i)&1 == 1 {
				cnt += alice + 1
				points += i
			}
		}
		if cnt <= numArrows && mx < points {
			state = mask
			mx = points
		}
	}
	ans := make([]int, n)
	for i, alice := range aliceArrows {
		if (state>>i)&1 == 1 {
			ans[i] = alice + 1
			numArrows -= ans[i]
		}
	}
	ans[0] += numArrows
	return ans
}

TypeScript

function maximumBobPoints(numArrows: number, aliceArrows: number[]): number[] {
    const dfs = (arr: number[], i: number, c: number): number[] => {
        if (i < 0 || c === 0) {
            arr[0] += c;
            return arr;
        }
        const a1 = dfs([...arr], i - 1, c);
        if (c > aliceArrows[i]) {
            arr[i] = aliceArrows[i] + 1;
            const a2 = dfs(arr, i - 1, c - aliceArrows[i] - 1);
            if (
                a2.reduce((p, v, i) => p + (v > 0 ? i : 0), 0) >=
                a1.reduce((p, v, i) => p + (v > 0 ? i : 0), 0)
            ) {
                return a2;
            }
        }
        return a1;
    };
    return dfs(new Array(12).fill(0), 11, numArrows);
}

Rust

impl Solution {
    fn dfs(alice_arrows: &Vec<i32>, mut res: Vec<i32>, count: i32, i: usize) -> Vec<i32> {
        if i == 0 || count == 0 {
            res[0] += count;
            return res;
        }
        let r1 = Self::dfs(alice_arrows, res.clone(), count, i - 1);
        if count > alice_arrows[i] {
            res[i] = alice_arrows[i] + 1;
            let r2 = Self::dfs(alice_arrows, res, count - alice_arrows[i] - 1, i - 1);
            if r2
                .iter()
                .enumerate()
                .map(|(i, v)| if v > &0 { i } else { 0 })
                .sum::<usize>()
                > r1.iter()
                    .enumerate()
                    .map(|(i, v)| if v > &0 { i } else { 0 })
                    .sum::<usize>()
            {
                return r2;
            }
        }
        r1
    }

    pub fn maximum_bob_points(num_arrows: i32, alice_arrows: Vec<i32>) -> Vec<i32> {
        Self::dfs(&alice_arrows, vec![0; 12], num_arrows, 11)
    }
}