comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1709 |
Weekly Contest 276 Q3 |
|
You are given a 0-indexed 2D integer array questions
where questions[i] = [pointsi, brainpoweri]
.
The array describes the questions of an exam, where you have to process the questions in order (i.e., starting from question 0
) and make a decision whether to solve or skip each question. Solving question i
will earn you pointsi
points but you will be unable to solve each of the next brainpoweri
questions. If you skip question i
, you get to make the decision on the next question.
- For example, given
questions = [[3, 2], [4, 3], [4, 4], [2, 5]]
:<ul> <li>If question <code>0</code> is solved, you will earn <code>3</code> points but you will be unable to solve questions <code>1</code> and <code>2</code>.</li> <li>If instead, question <code>0</code> is skipped and question <code>1</code> is solved, you will earn <code>4</code> points but you will be unable to solve questions <code>2</code> and <code>3</code>.</li> </ul> </li>
Return the maximum points you can earn for the exam.
Example 1:
Input: questions = [[3,2],[4,3],[4,4],[2,5]] Output: 5 Explanation: The maximum points can be earned by solving questions 0 and 3. - Solve question 0: Earn 3 points, will be unable to solve the next 2 questions - Unable to solve questions 1 and 2 - Solve question 3: Earn 2 points Total points earned: 3 + 2 = 5. There is no other way to earn 5 or more points.
Example 2:
Input: questions = [[1,1],[2,2],[3,3],[4,4],[5,5]] Output: 7 Explanation: The maximum points can be earned by solving questions 1 and 4. - Skip question 0 - Solve question 1: Earn 2 points, will be unable to solve the next 2 questions - Unable to solve questions 2 and 3 - Solve question 4: Earn 5 points Total points earned: 2 + 5 = 7. There is no other way to earn 7 or more points.
Constraints:
1 <= questions.length <= 105
questions[i].length == 2
1 <= pointsi, brainpoweri <= 105
We design a function
The calculation method of the function
- If
$i \geq n$ , it means that all problems have been solved, return$0$ ; - Otherwise, let the score of the
$i$ -th problem be$p$ , and the number of problems to skip be$b$ , then$dfs(i) = \max(p + dfs(i + b + 1), dfs(i + 1))$ .
To avoid repeated calculations, we can use the method of memoization search, using an array
The time complexity is
class Solution:
def mostPoints(self, questions: List[List[int]]) -> int:
@cache
def dfs(i: int) -> int:
if i >= len(questions):
return 0
p, b = questions[i]
return max(p + dfs(i + b + 1), dfs(i + 1))
return dfs(0)
class Solution {
private int n;
private Long[] f;
private int[][] questions;
public long mostPoints(int[][] questions) {
n = questions.length;
f = new Long[n];
this.questions = questions;
return dfs(0);
}
private long dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != null) {
return f[i];
}
int p = questions[i][0], b = questions[i][1];
return f[i] = Math.max(p + dfs(i + b + 1), dfs(i + 1));
}
}
class Solution {
public:
long long mostPoints(vector<vector<int>>& questions) {
int n = questions.size();
long long f[n];
memset(f, 0, sizeof(f));
function<long long(int)> dfs = [&](int i) -> long long {
if (i >= n) {
return 0;
}
if (f[i]) {
return f[i];
}
int p = questions[i][0], b = questions[i][1];
return f[i] = max(p + dfs(i + b + 1), dfs(i + 1));
};
return dfs(0);
}
};
func mostPoints(questions [][]int) int64 {
n := len(questions)
f := make([]int64, n)
var dfs func(int) int64
dfs = func(i int) int64 {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
p, b := questions[i][0], questions[i][1]
f[i] = max(int64(p)+dfs(i+b+1), dfs(i+1))
return f[i]
}
return dfs(0)
}
function mostPoints(questions: number[][]): number {
const n = questions.length;
const f = Array(n).fill(0);
const dfs = (i: number): number => {
if (i >= n) {
return 0;
}
if (f[i] > 0) {
return f[i];
}
const [p, b] = questions[i];
return (f[i] = Math.max(p + dfs(i + b + 1), dfs(i + 1)));
};
return dfs(0);
}
We define
Considering
We calculate the values of
The time complexity is
class Solution:
def mostPoints(self, questions: List[List[int]]) -> int:
n = len(questions)
f = [0] * (n + 1)
for i in range(n - 1, -1, -1):
p, b = questions[i]
j = i + b + 1
f[i] = max(f[i + 1], p + (0 if j > n else f[j]))
return f[0]
class Solution {
public long mostPoints(int[][] questions) {
int n = questions.length;
long[] f = new long[n + 1];
for (int i = n - 1; i >= 0; --i) {
int p = questions[i][0], b = questions[i][1];
int j = i + b + 1;
f[i] = Math.max(f[i + 1], p + (j > n ? 0 : f[j]));
}
return f[0];
}
}
class Solution {
public:
long long mostPoints(vector<vector<int>>& questions) {
int n = questions.size();
long long f[n + 1];
memset(f, 0, sizeof(f));
for (int i = n - 1; ~i; --i) {
int p = questions[i][0], b = questions[i][1];
int j = i + b + 1;
f[i] = max(f[i + 1], p + (j > n ? 0 : f[j]));
}
return f[0];
}
};
func mostPoints(questions [][]int) int64 {
n := len(questions)
f := make([]int64, n+1)
for i := n - 1; i >= 0; i-- {
p := int64(questions[i][0])
if j := i + questions[i][1] + 1; j <= n {
p += f[j]
}
f[i] = max(f[i+1], p)
}
return f[0]
}
function mostPoints(questions: number[][]): number {
const n = questions.length;
const f = Array(n + 1).fill(0);
for (let i = n - 1; i >= 0; --i) {
const [p, b] = questions[i];
const j = i + b + 1;
f[i] = Math.max(f[i + 1], p + (j > n ? 0 : f[j]));
}
return f[0];
}