comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1724 |
Biweekly Contest 65 Q3 |
|
You are given a 2D integer array items
where items[i] = [pricei, beautyi]
denotes the price and beauty of an item respectively.
You are also given a 0-indexed integer array queries
. For each queries[j]
, you want to determine the maximum beauty of an item whose price is less than or equal to queries[j]
. If no such item exists, then the answer to this query is 0
.
Return an array answer
of the same length as queries
where answer[j]
is the answer to the jth
query.
Example 1:
Input: items = [[1,2],[3,2],[2,4],[5,6],[3,5]], queries = [1,2,3,4,5,6] Output: [2,4,5,5,6,6] Explanation: - For queries[0]=1, [1,2] is the only item which has price <= 1. Hence, the answer for this query is 2. - For queries[1]=2, the items which can be considered are [1,2] and [2,4]. The maximum beauty among them is 4. - For queries[2]=3 and queries[3]=4, the items which can be considered are [1,2], [3,2], [2,4], and [3,5]. The maximum beauty among them is 5. - For queries[4]=5 and queries[5]=6, all items can be considered. Hence, the answer for them is the maximum beauty of all items, i.e., 6.
Example 2:
Input: items = [[1,2],[1,2],[1,3],[1,4]], queries = [1] Output: [4] Explanation: The price of every item is equal to 1, so we choose the item with the maximum beauty 4. Note that multiple items can have the same price and/or beauty.
Example 3:
Input: items = [[10,1000]], queries = [5] Output: [0] Explanation: No item has a price less than or equal to 5, so no item can be chosen. Hence, the answer to the query is 0.
Constraints:
1 <= items.length, queries.length <= 105
items[i].length == 2
1 <= pricei, beautyi, queries[j] <= 109
For each query, we need to find the maximum beauty value among the items with a price less than or equal to the query price. We can use the offline query method, first sort the items by price, and then sort the queries by price.
Next, we traverse the queries from small to large. For each query, we use a pointer
The time complexity is
class Solution:
def maximumBeauty(self, items: List[List[int]], queries: List[int]) -> List[int]:
items.sort()
n, m = len(items), len(queries)
ans = [0] * len(queries)
i = mx = 0
for q, j in sorted(zip(queries, range(m))):
while i < n and items[i][0] <= q:
mx = max(mx, items[i][1])
i += 1
ans[j] = mx
return ans
class Solution {
public int[] maximumBeauty(int[][] items, int[] queries) {
Arrays.sort(items, (a, b) -> a[0] - b[0]);
int n = items.length;
int m = queries.length;
int[] ans = new int[m];
Integer[] idx = new Integer[m];
for (int i = 0; i < m; ++i) {
idx[i] = i;
}
Arrays.sort(idx, (i, j) -> queries[i] - queries[j]);
int i = 0, mx = 0;
for (int j : idx) {
while (i < n && items[i][0] <= queries[j]) {
mx = Math.max(mx, items[i][1]);
++i;
}
ans[j] = mx;
}
return ans;
}
}
class Solution {
public:
vector<int> maximumBeauty(vector<vector<int>>& items, vector<int>& queries) {
sort(items.begin(), items.end());
int n = items.size();
int m = queries.size();
vector<int> idx(m);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int i, int j) {
return queries[i] < queries[j];
});
int mx = 0, i = 0;
vector<int> ans(m);
for (int j : idx) {
while (i < n && items[i][0] <= queries[j]) {
mx = max(mx, items[i][1]);
++i;
}
ans[j] = mx;
}
return ans;
}
};
func maximumBeauty(items [][]int, queries []int) []int {
sort.Slice(items, func(i, j int) bool {
return items[i][0] < items[j][0]
})
n, m := len(items), len(queries)
idx := make([]int, m)
for i := range idx {
idx[i] = i
}
sort.Slice(idx, func(i, j int) bool { return queries[idx[i]] < queries[idx[j]] })
ans := make([]int, m)
i, mx := 0, 0
for _, j := range idx {
for i < n && items[i][0] <= queries[j] {
mx = max(mx, items[i][1])
i++
}
ans[j] = mx
}
return ans
}
function maximumBeauty(items: number[][], queries: number[]): number[] {
const n = items.length;
const m = queries.length;
items.sort((a, b) => a[0] - b[0]);
const idx: number[] = Array(m)
.fill(0)
.map((_, i) => i);
idx.sort((i, j) => queries[i] - queries[j]);
let [i, mx] = [0, 0];
const ans: number[] = Array(m).fill(0);
for (const j of idx) {
while (i < n && items[i][0] <= queries[j]) {
mx = Math.max(mx, items[i][1]);
++i;
}
ans[j] = mx;
}
return ans;
}
We can sort the items by price, and then preprocess the maximum beauty value of the items that are less than or equal to each price, recorded in the array
For each query, we can use binary search to find the index
The time complexity is
class Solution:
def maximumBeauty(self, items: List[List[int]], queries: List[int]) -> List[int]:
items.sort()
prices = [p for p, _ in items]
n = len(items)
mx = [items[0][1]]
for i in range(1, n):
mx.append(max(mx[i - 1], items[i][1]))
ans = []
for q in queries:
j = bisect_right(prices, q) - 1
ans.append(0 if j < 0 else mx[j])
return ans
class Solution {
public int[] maximumBeauty(int[][] items, int[] queries) {
Arrays.sort(items, (a, b) -> a[0] - b[0]);
int n = items.length;
int m = queries.length;
int[] prices = new int[n];
prices[0] = items[0][0];
for (int i = 1; i < n; ++i) {
prices[i] = items[i][0];
items[i][1] = Math.max(items[i - 1][1], items[i][1]);
}
int[] ans = new int[m];
for (int i = 0; i < m; ++i) {
int j = Arrays.binarySearch(prices, queries[i] + 1);
j = j < 0 ? -j - 2 : j - 1;
ans[i] = j < 0 ? 0 : items[j][1];
}
return ans;
}
}
class Solution {
public:
vector<int> maximumBeauty(vector<vector<int>>& items, vector<int>& queries) {
sort(items.begin(), items.end());
int n = items.size();
int m = queries.size();
vector<int> prices(n, items[0][0]);
for (int i = 1; i < n; ++i) {
prices[i] = items[i][0];
items[i][1] = max(items[i - 1][1], items[i][1]);
}
vector<int> ans;
for (int q : queries) {
int j = upper_bound(prices.begin(), prices.end(), q) - prices.begin() - 1;
ans.push_back(j < 0 ? 0 : items[j][1]);
}
return ans;
}
};
func maximumBeauty(items [][]int, queries []int) []int {
sort.Slice(items, func(i, j int) bool {
return items[i][0] < items[j][0]
})
n, m := len(items), len(queries)
prices := make([]int, n)
prices[0] = items[0][0]
for i := 1; i < n; i++ {
prices[i] = items[i][0]
items[i][1] = max(items[i][1], items[i-1][1])
}
ans := make([]int, m)
for i, q := range queries {
j := sort.SearchInts(prices, q+1) - 1
if j >= 0 {
ans[i] = items[j][1]
}
}
return ans
}
function maximumBeauty(items: number[][], queries: number[]): number[] {
items.sort((a, b) => a[0] - b[0]);
const n = items.length;
for (let i = 1; i < n; ++i) {
items[i][1] = Math.max(items[i][1], items[i - 1][1]);
}
const ans: number[] = [];
for (const q of queries) {
let l = 0,
r = n;
while (l < r) {
const mid = (l + r) >> 1;
if (items[mid][0] > q) {
r = mid;
} else {
l = mid + 1;
}
}
ans.push(--l >= 0 ? items[l][1] : 0);
}
return ans;
}