Skip to content

Latest commit

 

History

History
221 lines (178 loc) · 6.29 KB

File metadata and controls

221 lines (178 loc) · 6.29 KB
comments difficulty edit_url rating source tags
true
Medium
2078
Weekly Contest 222 Q3
Array
Two Pointers
Binary Search
Prefix Sum

中文文档

Description

A split of an integer array is good if:

  • The array is split into three non-empty contiguous subarrays - named left, mid, right respectively from left to right.
  • The sum of the elements in left is less than or equal to the sum of the elements in mid, and the sum of the elements in mid is less than or equal to the sum of the elements in right.

Given nums, an array of non-negative integers, return the number of good ways to split nums. As the number may be too large, return it modulo 109 + 7.

 

Example 1:

Input: nums = [1,1,1]
Output: 1
Explanation: The only good way to split nums is [1] [1] [1].

Example 2:

Input: nums = [1,2,2,2,5,0]
Output: 3
Explanation: There are three good ways of splitting nums:
[1] [2] [2,2,5,0]
[1] [2,2] [2,5,0]
[1,2] [2,2] [5,0]

Example 3:

Input: nums = [3,2,1]
Output: 0
Explanation: There is no good way to split nums.

 

Constraints:

  • 3 <= nums.length <= 105
  • 0 <= nums[i] <= 104

Solutions

Solution 1: Prefix Sum + Binary Search

First, we preprocess the prefix sum array $s$ of the array $nums$, where $s[i]$ represents the sum of the first $i+1$ elements of the array $nums$.

Since all elements of the array $nums$ are non-negative integers, the prefix sum array $s$ is a monotonically increasing array.

We enumerate the index $i$ that the left subarray can reach in the range $[0,..n-2)$, and then use the monotonically increasing characteristic of the prefix sum array to find the reasonable range of the mid subarray split by binary search, denoted as $[j, k)$, and accumulate the number of schemes $k-j$.

In the binary search details, the subarray split must satisfy $s[j] \geq s[i]$ and $s[n - 1] - s[k] \geq s[k] - s[i]$. That is, $s[j] \geq s[i]$ and $s[k] \leq \frac{s[n - 1] + s[i]}{2}$.

Finally, return the number of schemes modulo $10^9+7$.

The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$.

Python3

class Solution:
    def waysToSplit(self, nums: List[int]) -> int:
        mod = 10**9 + 7
        s = list(accumulate(nums))
        ans, n = 0, len(nums)
        for i in range(n - 2):
            j = bisect_left(s, s[i] << 1, i + 1, n - 1)
            k = bisect_right(s, (s[-1] + s[i]) >> 1, j, n - 1)
            ans += k - j
        return ans % mod

Java

class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int waysToSplit(int[] nums) {
        int n = nums.length;
        int[] s = new int[n];
        s[0] = nums[0];
        for (int i = 1; i < n; ++i) {
            s[i] = s[i - 1] + nums[i];
        }
        int ans = 0;
        for (int i = 0; i < n - 2; ++i) {
            int j = search(s, s[i] << 1, i + 1, n - 1);
            int k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1);
            ans = (ans + k - j) % MOD;
        }
        return ans;
    }

    private int search(int[] s, int x, int left, int right) {
        while (left < right) {
            int mid = (left + right) >> 1;
            if (s[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

class Solution {
public:
    const int mod = 1e9 + 7;

    int waysToSplit(vector<int>& nums) {
        int n = nums.size();
        vector<int> s(n, nums[0]);
        for (int i = 1; i < n; ++i) s[i] = s[i - 1] + nums[i];
        int ans = 0;
        for (int i = 0; i < n - 2; ++i) {
            int j = lower_bound(s.begin() + i + 1, s.begin() + n - 1, s[i] << 1) - s.begin();
            int k = upper_bound(s.begin() + j, s.begin() + n - 1, (s[n - 1] + s[i]) >> 1) - s.begin();
            ans = (ans + k - j) % mod;
        }
        return ans;
    }
};

Go

func waysToSplit(nums []int) (ans int) {
	const mod int = 1e9 + 7
	n := len(nums)
	s := make([]int, n)
	s[0] = nums[0]
	for i := 1; i < n; i++ {
		s[i] = s[i-1] + nums[i]
	}
	for i := 0; i < n-2; i++ {
		j := sort.Search(n-1, func(h int) bool { return h > i && s[h] >= (s[i]<<1) })
		k := sort.Search(n-1, func(h int) bool { return h >= j && s[h] > (s[n-1]+s[i])>>1 })
		ans = (ans + k - j) % mod
	}
	return
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number}
 */
var waysToSplit = function (nums) {
    const mod = 1e9 + 7;
    const n = nums.length;
    const s = new Array(n).fill(nums[0]);
    for (let i = 1; i < n; ++i) {
        s[i] = s[i - 1] + nums[i];
    }
    function search(s, x, left, right) {
        while (left < right) {
            const mid = (left + right) >> 1;
            if (s[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
    let ans = 0;
    for (let i = 0; i < n - 2; ++i) {
        const j = search(s, s[i] << 1, i + 1, n - 1);
        const k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1);
        ans = (ans + k - j) % mod;
    }
    return ans;
};