comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1423 |
Biweekly Contest 29 Q3 |
|
Given a binary array nums
, you should delete one element from it.
Return the size of the longest non-empty subarray containing only 1
's in the resulting array. Return 0
if there is no such subarray.
Example 1:
Input: nums = [1,1,0,1] Output: 3 Explanation: After deleting the number in position 2, [1,1,1] contains 3 numbers with value of 1's.
Example 2:
Input: nums = [0,1,1,1,0,1,1,0,1] Output: 5 Explanation: After deleting the number in position 4, [0,1,1,1,1,1,0,1] longest subarray with value of 1's is [1,1,1,1,1].
Example 3:
Input: nums = [1,1,1] Output: 2 Explanation: You must delete one element.
Constraints:
1 <= nums.length <= 105
nums[i]
is either0
or1
.
We can enumerate each position
Specifically, we use two arrays
The final answer is
The time complexity is
class Solution:
def longestSubarray(self, nums: List[int]) -> int:
n = len(nums)
left = [0] * (n + 1)
right = [0] * (n + 1)
for i, x in enumerate(nums, 1):
if x:
left[i] = left[i - 1] + 1
for i in range(n - 1, -1, -1):
if nums[i]:
right[i] = right[i + 1] + 1
return max(left[i] + right[i + 1] for i in range(n))
class Solution {
public int longestSubarray(int[] nums) {
int n = nums.length;
int[] left = new int[n + 1];
int[] right = new int[n + 1];
for (int i = 1; i <= n; ++i) {
if (nums[i - 1] == 1) {
left[i] = left[i - 1] + 1;
}
}
for (int i = n - 1; i >= 0; --i) {
if (nums[i] == 1) {
right[i] = right[i + 1] + 1;
}
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = Math.max(ans, left[i] + right[i + 1]);
}
return ans;
}
}
class Solution {
public:
int longestSubarray(vector<int>& nums) {
int n = nums.size();
vector<int> left(n + 1);
vector<int> right(n + 1);
for (int i = 1; i <= n; ++i) {
if (nums[i - 1]) {
left[i] = left[i - 1] + 1;
}
}
for (int i = n - 1; ~i; --i) {
if (nums[i]) {
right[i] = right[i + 1] + 1;
}
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = max(ans, left[i] + right[i + 1]);
}
return ans;
}
};
func longestSubarray(nums []int) (ans int) {
n := len(nums)
left := make([]int, n+1)
right := make([]int, n+1)
for i := 1; i <= n; i++ {
if nums[i-1] == 1 {
left[i] = left[i-1] + 1
}
}
for i := n - 1; i >= 0; i-- {
if nums[i] == 1 {
right[i] = right[i+1] + 1
}
}
for i := 0; i < n; i++ {
ans = max(ans, left[i]+right[i+1])
}
return
}
function longestSubarray(nums: number[]): number {
const n = nums.length;
const left: number[] = Array(n + 1).fill(0);
const right: number[] = Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
if (nums[i - 1]) {
left[i] = left[i - 1] + 1;
}
}
for (let i = n - 1; ~i; --i) {
if (nums[i]) {
right[i] = right[i + 1] + 1;
}
}
let ans = 0;
for (let i = 0; i < n; ++i) {
ans = Math.max(ans, left[i] + right[i + 1]);
}
return ans;
}
The problem is actually asking us to find the longest subarray that contains at most one
Therefore, we can use two pointers
Next, we move the right pointer
The time complexity is
class Solution:
def longestSubarray(self, nums: List[int]) -> int:
ans = 0
cnt = j = 0
for i, x in enumerate(nums):
cnt += x ^ 1
while cnt > 1:
cnt -= nums[j] ^ 1
j += 1
ans = max(ans, i - j)
return ans
class Solution {
public int longestSubarray(int[] nums) {
int ans = 0, n = nums.length;
for (int i = 0, j = 0, cnt = 0; i < n; ++i) {
cnt += nums[i] ^ 1;
while (cnt > 1) {
cnt -= nums[j++] ^ 1;
}
ans = Math.max(ans, i - j);
}
return ans;
}
}
class Solution {
public:
int longestSubarray(vector<int>& nums) {
int ans = 0, n = nums.size();
for (int i = 0, j = 0, cnt = 0; i < n; ++i) {
cnt += nums[i] ^ 1;
while (cnt > 1) {
cnt -= nums[j++] ^ 1;
}
ans = max(ans, i - j);
}
return ans;
}
};
func longestSubarray(nums []int) (ans int) {
cnt, j := 0, 0
for i, x := range nums {
cnt += x ^ 1
for ; cnt > 1; j++ {
cnt -= nums[j] ^ 1
}
ans = max(ans, i-j)
}
return
}
function longestSubarray(nums: number[]): number {
let [ans, cnt, j] = [0, 0, 0];
for (let i = 0; i < nums.length; ++i) {
cnt += nums[i] ^ 1;
while (cnt > 1) {
cnt -= nums[j++] ^ 1;
}
ans = Math.max(ans, i - j);
}
return ans;
}
In Solution 2, we move the left pointer in a loop until
Finally, the answer we return is
The time complexity is
class Solution:
def longestSubarray(self, nums: List[int]) -> int:
cnt = l = 0
for x in nums:
cnt += x ^ 1
if cnt > 1:
cnt -= nums[l] ^ 1
l += 1
return len(nums) - l - 1
class Solution {
public int longestSubarray(int[] nums) {
int ans = 0, cnt = 0, l = 0;
for (int x : nums) {
cnt += x ^ 1;
if (cnt > 1) {
cnt -= nums[l++] ^ 1;
}
}
return nums.length - l - 1;
}
}
class Solution {
public:
int longestSubarray(vector<int>& nums) {
int ans = 0, cnt = 0, l = 0;
for (int x : nums) {
cnt += x ^ 1;
if (cnt > 1) {
cnt -= nums[l++] ^ 1;
}
}
return nums.size() - l - 1;
}
};
func longestSubarray(nums []int) (ans int) {
cnt, l := 0, 0
for _, x := range nums {
cnt += x ^ 1
if cnt > 1 {
cnt -= nums[l] ^ 1
l++
}
}
return len(nums) - l - 1
}
function longestSubarray(nums: number[]): number {
let [cnt, l] = [0, 0];
for (const x of nums) {
cnt += x ^ 1;
if (cnt > 1) {
cnt -= nums[l++] ^ 1;
}
}
return nums.length - l - 1;
}