comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1973 |
第 194 场周赛 Q3 |
|
你的国家有无数个湖泊,所有湖泊一开始都是空的。当第 n
个湖泊下雨前是空的,那么它就会装满水。如果第 n
个湖泊下雨前是 满的 ,这个湖泊会发生 洪水 。你的目标是避免任意一个湖泊发生洪水。
给你一个整数数组 rains
,其中:
rains[i] > 0
表示第i
天时,第rains[i]
个湖泊会下雨。rains[i] == 0
表示第i
天没有湖泊会下雨,你可以选择 一个 湖泊并 抽干 这个湖泊的水。
请返回一个数组 ans
,满足:
ans.length == rains.length
- 如果
rains[i] > 0
,那么ans[i] == -1
。 - 如果
rains[i] == 0
,ans[i]
是你第i
天选择抽干的湖泊。
如果有多种可行解,请返回它们中的 任意一个 。如果没办法阻止洪水,请返回一个 空的数组 。
请注意,如果你选择抽干一个装满水的湖泊,它会变成一个空的湖泊。但如果你选择抽干一个空的湖泊,那么将无事发生。
示例 1:
输入:rains = [1,2,3,4] 输出:[-1,-1,-1,-1] 解释:第一天后,装满水的湖泊包括 [1] 第二天后,装满水的湖泊包括 [1,2] 第三天后,装满水的湖泊包括 [1,2,3] 第四天后,装满水的湖泊包括 [1,2,3,4] 没有哪一天你可以抽干任何湖泊的水,也没有湖泊会发生洪水。
示例 2:
输入:rains = [1,2,0,0,2,1] 输出:[-1,-1,2,1,-1,-1] 解释:第一天后,装满水的湖泊包括 [1] 第二天后,装满水的湖泊包括 [1,2] 第三天后,我们抽干湖泊 2 。所以剩下装满水的湖泊包括 [1] 第四天后,我们抽干湖泊 1 。所以暂时没有装满水的湖泊了。 第五天后,装满水的湖泊包括 [2]。 第六天后,装满水的湖泊包括 [1,2]。 可以看出,这个方案下不会有洪水发生。同时, [-1,-1,1,2,-1,-1] 也是另一个可行的没有洪水的方案。
示例 3:
输入:rains = [1,2,0,1,2] 输出:[] 解释:第二天后,装满水的湖泊包括 [1,2]。我们可以在第三天抽干一个湖泊的水。 但第三天后,湖泊 1 和 2 都会再次下雨,所以不管我们第三天抽干哪个湖泊的水,另一个湖泊都会发生洪水。
提示:
1 <= rains.length <= 105
0 <= rains[i] <= 109
我们将所有晴天都存入
接下来,我们遍历
遍历结束,返回答案数组。
时间复杂度
class Solution:
def avoidFlood(self, rains: List[int]) -> List[int]:
n = len(rains)
ans = [-1] * n
sunny = SortedList()
rainy = {}
for i, v in enumerate(rains):
if v:
if v in rainy:
idx = sunny.bisect_right(rainy[v])
if idx == len(sunny):
return []
ans[sunny[idx]] = v
sunny.discard(sunny[idx])
rainy[v] = i
else:
sunny.add(i)
ans[i] = 1
return ans
class Solution {
public int[] avoidFlood(int[] rains) {
int n = rains.length;
int[] ans = new int[n];
Arrays.fill(ans, -1);
TreeSet<Integer> sunny = new TreeSet<>();
Map<Integer, Integer> rainy = new HashMap<>();
for (int i = 0; i < n; ++i) {
int v = rains[i];
if (v > 0) {
if (rainy.containsKey(v)) {
Integer t = sunny.higher(rainy.get(v));
if (t == null) {
return new int[0];
}
ans[t] = v;
sunny.remove(t);
}
rainy.put(v, i);
} else {
sunny.add(i);
ans[i] = 1;
}
}
return ans;
}
}
class Solution {
public:
vector<int> avoidFlood(vector<int>& rains) {
int n = rains.size();
vector<int> ans(n, -1);
set<int> sunny;
unordered_map<int, int> rainy;
for (int i = 0; i < n; ++i) {
int v = rains[i];
if (v) {
if (rainy.count(v)) {
auto it = sunny.upper_bound(rainy[v]);
if (it == sunny.end()) {
return {};
}
ans[*it] = v;
sunny.erase(it);
}
rainy[v] = i;
} else {
sunny.insert(i);
ans[i] = 1;
}
}
return ans;
}
};
func avoidFlood(rains []int) []int {
n := len(rains)
ans := make([]int, n)
for i := range ans {
ans[i] = -1
}
sunny := []int{}
rainy := map[int]int{}
for i, v := range rains {
if v > 0 {
if j, ok := rainy[v]; ok {
idx := sort.SearchInts(sunny, j+1)
if idx == len(sunny) {
return []int{}
}
ans[sunny[idx]] = v
sunny = append(sunny[:idx], sunny[idx+1:]...)
}
rainy[v] = i
} else {
sunny = append(sunny, i)
ans[i] = 1
}
}
return ans
}
function avoidFlood(rains: number[]): number[] {
const n = rains.length;
const ans: number[] = new Array(n).fill(-1);
const sunny: TreeSet<number> = new TreeSet<number>();
const rainy: Map<number, number> = new Map<number, number>();
for (let i = 0; i < n; ++i) {
const v = rains[i];
if (v > 0) {
if (rainy.has(v)) {
const t = sunny.higher(rainy.get(v)!);
if (t === undefined) {
return [];
}
ans[t] = v;
sunny.delete(t);
}
rainy.set(v, i);
} else {
sunny.add(i);
ans[i] = 1;
}
}
return ans;
}
type Compare<T> = (lhs: T, rhs: T) => number;
class RBTreeNode<T = number> {
data: T;
count: number;
left: RBTreeNode<T> | null;
right: RBTreeNode<T> | null;
parent: RBTreeNode<T> | null;
color: number;
constructor(data: T) {
this.data = data;
this.left = this.right = this.parent = null;
this.color = 0;
this.count = 1;
}
sibling(): RBTreeNode<T> | null {
if (!this.parent) return null; // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left;
}
isOnLeft(): boolean {
return this === this.parent!.left;
}
hasRedChild(): boolean {
return (
Boolean(this.left && this.left.color === 0) ||
Boolean(this.right && this.right.color === 0)
);
}
}
class RBTree<T> {
root: RBTreeNode<T> | null;
lt: (l: T, r: T) => boolean;
constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
this.root = null;
this.lt = (l: T, r: T) => compare(l, r) < 0;
}
rotateLeft(pt: RBTreeNode<T>): void {
const right = pt.right!;
pt.right = right.left;
if (pt.right) pt.right.parent = pt;
right.parent = pt.parent;
if (!pt.parent) this.root = right;
else if (pt === pt.parent.left) pt.parent.left = right;
else pt.parent.right = right;
right.left = pt;
pt.parent = right;
}
rotateRight(pt: RBTreeNode<T>): void {
const left = pt.left!;
pt.left = left.right;
if (pt.left) pt.left.parent = pt;
left.parent = pt.parent;
if (!pt.parent) this.root = left;
else if (pt === pt.parent.left) pt.parent.left = left;
else pt.parent.right = left;
left.right = pt;
pt.parent = left;
}
swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color;
p1.color = p2.color;
p2.color = tmp;
}
swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data;
p1.data = p2.data;
p2.data = tmp;
}
fixAfterInsert(pt: RBTreeNode<T>): void {
let parent = null;
let grandParent = null;
while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent;
grandParent = pt.parent.parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent;
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent);
this.swapColor(parent!, grandParent);
pt = parent!;
}
} else {
/* Case : B
Parent of pt is right child of Grand-parent of pt */
const uncle = grandParent!.left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle != null && uncle.color === 0) {
grandParent!.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent!;
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!);
this.swapColor(parent!, grandParent!);
pt = parent!;
}
}
}
this.root!.color = 1;
}
delete(val: T): boolean {
const node = this.find(val);
if (!node) return false;
node.count--;
if (!node.count) this.deleteNode(node);
return true;
}
deleteAll(val: T): boolean {
const node = this.find(val);
if (!node) return false;
this.deleteNode(node);
return true;
}
deleteNode(v: RBTreeNode<T>): void {
const u = BSTreplace(v);
// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1;
const parent = v.parent!;
if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null;
// v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v);
} else {
// u or v is red
if (v.sibling()) {
// sibling is not null, make it red"
v.sibling()!.color = 0;
}
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null;
else parent.right = null;
}
return;
}
if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data;
v.left = v.right = null;
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u;
else parent.right = u;
u.parent = parent;
if (uvBlack) this.fixDoubleBlack(u);
// u and v both black, fix double black at u
else u.color = 1; // u or v red, color u black
}
return;
}
// v has 2 children, swap data with successor and recurse
this.swapData(u, v);
this.deleteNode(u);
// find node that replaces a deleted node in BST
function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right);
// when leaf
if (!x.left && !x.right) return null;
// when single child
return x.left ?? x.right;
}
// find node that do not have a left child
// in the subtree of the given node
function successor(x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x;
while (temp.left) temp = temp.left;
return temp;
}
}
fixDoubleBlack(x: RBTreeNode<T>): void {
if (x === this.root) return; // Reached root
const sibling = x.sibling();
const parent = x.parent!;
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent);
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0;
sibling.color = 1;
if (sibling.isOnLeft()) this.rotateRight(parent);
// left case
else this.rotateLeft(parent); // right case
this.fixDoubleBlack(x);
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color;
sibling.color = parent.color;
this.rotateRight(parent);
} else {
// right left
sibling.left.color = parent.color;
this.rotateRight(sibling);
this.rotateLeft(parent);
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color;
this.rotateLeft(sibling);
this.rotateRight(parent);
} else {
// right right
sibling.right!.color = sibling.color;
sibling.color = parent.color;
this.rotateLeft(parent);
}
}
parent.color = 1;
} else {
// 2 black children
sibling.color = 0;
if (parent.color === 1) this.fixDoubleBlack(parent);
else parent.color = 1;
}
}
}
}
insert(data: T): boolean {
// search for a position to insert
let parent = this.root;
while (parent) {
if (this.lt(data, parent.data)) {
if (!parent.left) break;
else parent = parent.left;
} else if (this.lt(parent.data, data)) {
if (!parent.right) break;
else parent = parent.right;
} else break;
}
// insert node into parent
const node = new RBTreeNode(data);
if (!parent) this.root = node;
else if (this.lt(node.data, parent.data)) parent.left = node;
else if (this.lt(parent.data, node.data)) parent.right = node;
else {
parent.count++;
return false;
}
node.parent = parent;
this.fixAfterInsert(node);
return true;
}
find(data: T): RBTreeNode<T> | null {
let p = this.root;
while (p) {
if (this.lt(data, p.data)) {
p = p.left;
} else if (this.lt(p.data, data)) {
p = p.right;
} else break;
}
return p ?? null;
}
*inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.inOrder(root.left!)) yield v;
yield root.data;
for (const v of this.inOrder(root.right!)) yield v;
}
*reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.reverseInOrder(root.right!)) yield v;
yield root.data;
for (const v of this.reverseInOrder(root.left!)) yield v;
}
}
class TreeSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}
size(): number {
return this._size;
}
has(val: T): boolean {
return !!this.tree.find(val);
}
add(val: T): boolean {
const successful = this.tree.insert(val);
this._size += successful ? 1 : 0;
return successful;
}
delete(val: T): boolean {
const deleted = this.tree.deleteAll(val);
this._size -= deleted ? 1 : 0;
return deleted;
}
ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
first(): T | undefined {
return this.tree.inOrder().next().value;
}
last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
*[Symbol.iterator](): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) yield val;
return undefined;
}
/**
* Return a generator for reverse order traversing the set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) yield val;
return undefined;
}
}