comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Medium |
1524 |
Biweekly Contest 14 Q2 |
|
A set of real numbers can be represented as the union of several disjoint intervals, where each interval is in the form [a, b)
. A real number x
is in the set if one of its intervals [a, b)
contains x
(i.e. a <= x < b
).
You are given a sorted list of disjoint intervals intervals
representing a set of real numbers as described above, where intervals[i] = [ai, bi]
represents the interval [ai, bi)
. You are also given another interval toBeRemoved
.
Return the set of real numbers with the interval toBeRemoved
removed from intervals
. In other words, return the set of real numbers such that every x
in the set is in intervals
but not in toBeRemoved
. Your answer should be a sorted list of disjoint intervals as described above.
Example 1:
Input: intervals = [[0,2],[3,4],[5,7]], toBeRemoved = [1,6] Output: [[0,1],[6,7]]
Example 2:
Input: intervals = [[0,5]], toBeRemoved = [2,3] Output: [[0,2],[3,5]]
Example 3:
Input: intervals = [[-5,-4],[-3,-2],[1,2],[3,5],[8,9]], toBeRemoved = [-1,4] Output: [[-5,-4],[-3,-2],[4,5],[8,9]]
Constraints:
1 <= intervals.length <= 104
-109 <= ai < bi <= 109
We denote the interval to be removed as
-
$a \geq y$ or$b \leq x$ , which means that this interval does not intersect with the interval to be removed. We directly add this interval to the answer. -
$a \lt x$ ,$b \gt y$ , which means that this interval intersects with the interval to be removed. We split this interval into two intervals and add them to the answer. -
$a \geq x$ ,$b \leq y$ , which means that this interval is completely covered by the interval to be removed. We do not add it to the answer.
The time complexity is
class Solution:
def removeInterval(
self, intervals: List[List[int]], toBeRemoved: List[int]
) -> List[List[int]]:
x, y = toBeRemoved
ans = []
for a, b in intervals:
if a >= y or b <= x:
ans.append([a, b])
else:
if a < x:
ans.append([a, x])
if b > y:
ans.append([y, b])
return ans
class Solution {
public List<List<Integer>> removeInterval(int[][] intervals, int[] toBeRemoved) {
int x = toBeRemoved[0], y = toBeRemoved[1];
List<List<Integer>> ans = new ArrayList<>();
for (var e : intervals) {
int a = e[0], b = e[1];
if (a >= y || b <= x) {
ans.add(Arrays.asList(a, b));
} else {
if (a < x) {
ans.add(Arrays.asList(a, x));
}
if (b > y) {
ans.add(Arrays.asList(y, b));
}
}
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> removeInterval(vector<vector<int>>& intervals, vector<int>& toBeRemoved) {
int x = toBeRemoved[0], y = toBeRemoved[1];
vector<vector<int>> ans;
for (auto& e : intervals) {
int a = e[0], b = e[1];
if (a >= y || b <= x) {
ans.push_back(e);
} else {
if (a < x) {
ans.push_back({a, x});
}
if (b > y) {
ans.push_back({y, b});
}
}
}
return ans;
}
};
func removeInterval(intervals [][]int, toBeRemoved []int) (ans [][]int) {
x, y := toBeRemoved[0], toBeRemoved[1]
for _, e := range intervals {
a, b := e[0], e[1]
if a >= y || b <= x {
ans = append(ans, e)
} else {
if a < x {
ans = append(ans, []int{a, x})
}
if b > y {
ans = append(ans, []int{y, b})
}
}
}
return
}