comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
中等 |
1569 |
第 144 场周赛 Q2 |
|
这里有 n
个航班,它们分别从 1
到 n
进行编号。
有一份航班预订表 bookings
,表中第 i
条预订记录 bookings[i] = [firsti, lasti, seatsi]
意味着在从 firsti
到 lasti
(包含 firsti
和 lasti
)的 每个航班 上预订了 seatsi
个座位。
请你返回一个长度为 n
的数组 answer
,里面的元素是每个航班预定的座位总数。
示例 1:
输入:bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5 输出:[10,55,45,25,25] 解释: 航班编号 1 2 3 4 5 预订记录 1 : 10 10 预订记录 2 : 20 20 预订记录 3 : 25 25 25 25 总座位数: 10 55 45 25 25 因此,answer = [10,55,45,25,25]
示例 2:
输入:bookings = [[1,2,10],[2,2,15]], n = 2 输出:[10,25] 解释: 航班编号 1 2 预订记录 1 : 10 10 预订记录 2 : 15 总座位数: 10 25 因此,answer = [10,25]
提示:
1 <= n <= 2 * 104
1 <= bookings.length <= 2 * 104
bookings[i].length == 3
1 <= firsti <= lasti <= n
1 <= seatsi <= 104
我们注意到,每一次预订都是在某个区间 [first, last]
内的所有航班上预订了 seats
个座位。因此,我们可以利用差分数组的思想,对于每一次预订,将 first
位置的数加上 seats
,将 last + 1
位置的数减去 seats
。最后,对差分数组求前缀和,即可得到每个航班预定的座位总数。
时间复杂度
class Solution:
def corpFlightBookings(self, bookings: List[List[int]], n: int) -> List[int]:
ans = [0] * n
for first, last, seats in bookings:
ans[first - 1] += seats
if last < n:
ans[last] -= seats
return list(accumulate(ans))
class Solution {
public int[] corpFlightBookings(int[][] bookings, int n) {
int[] ans = new int[n];
for (var e : bookings) {
int first = e[0], last = e[1], seats = e[2];
ans[first - 1] += seats;
if (last < n) {
ans[last] -= seats;
}
}
for (int i = 1; i < n; ++i) {
ans[i] += ans[i - 1];
}
return ans;
}
}
class Solution {
public:
vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {
vector<int> ans(n);
for (auto& e : bookings) {
int first = e[0], last = e[1], seats = e[2];
ans[first - 1] += seats;
if (last < n) {
ans[last] -= seats;
}
}
for (int i = 1; i < n; ++i) {
ans[i] += ans[i - 1];
}
return ans;
}
};
func corpFlightBookings(bookings [][]int, n int) []int {
ans := make([]int, n)
for _, e := range bookings {
first, last, seats := e[0], e[1], e[2]
ans[first-1] += seats
if last < n {
ans[last] -= seats
}
}
for i := 1; i < n; i++ {
ans[i] += ans[i-1]
}
return ans
}
impl Solution {
#[allow(dead_code)]
pub fn corp_flight_bookings(bookings: Vec<Vec<i32>>, n: i32) -> Vec<i32> {
let mut ans = vec![0; n as usize];
// Build the difference vector first
for b in &bookings {
let (l, r) = ((b[0] as usize) - 1, (b[1] as usize) - 1);
ans[l] += b[2];
if r < (n as usize) - 1 {
ans[r + 1] -= b[2];
}
}
// Build the prefix sum vector based on the difference vector
for i in 1..n as usize {
ans[i] += ans[i - 1];
}
ans
}
}
/**
* @param {number[][]} bookings
* @param {number} n
* @return {number[]}
*/
var corpFlightBookings = function (bookings, n) {
const ans = new Array(n).fill(0);
for (const [first, last, seats] of bookings) {
ans[first - 1] += seats;
if (last < n) {
ans[last] -= seats;
}
}
for (let i = 1; i < n; ++i) {
ans[i] += ans[i - 1];
}
return ans;
};
我们也可以利用树状数组,结合差分的思想,来实现上述操作。我们可以将每一次预订看作是在某个区间 [first, last]
内的所有航班上预订了 seats
个座位。因此,我们可以对每一次预订,对树状数组的 first
位置加上 seats
,对树状数组的 last + 1
位置减去 seats
。最后,对树状数组每个位置求前缀和,即可得到每个航班预定的座位总数。
时间复杂度
以下是树状数组的基本介绍:
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
- 单点更新
update(x, delta)
: 把序列 x 位置的数加上一个值 delta; - 前缀和查询
query(x)
:查询序列[1,...x]
区间的区间和,即位置 x 的前缀和。
这两个操作的时间复杂度均为
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += x & -x
def query(self, x):
s = 0
while x:
s += self.c[x]
x -= x & -x
return s
class Solution:
def corpFlightBookings(self, bookings: List[List[int]], n: int) -> List[int]:
tree = BinaryIndexedTree(n)
for first, last, seats in bookings:
tree.update(first, seats)
tree.update(last + 1, -seats)
return [tree.query(i + 1) for i in range(n)]
class Solution {
public int[] corpFlightBookings(int[][] bookings, int n) {
BinaryIndexedTree tree = new BinaryIndexedTree(n);
for (var e : bookings) {
int first = e[0], last = e[1], seats = e[2];
tree.update(first, seats);
tree.update(last + 1, -seats);
}
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
ans[i] = tree.query(i + 1);
}
return ans;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += x & -x;
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= x & -x;
}
return s;
}
}
class BinaryIndexedTree {
public:
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += x & -x;
}
}
int query(int x) {
int s = 0;
while (x) {
s += c[x];
x -= x & -x;
}
return s;
}
private:
int n;
vector<int> c;
};
class Solution {
public:
vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {
BinaryIndexedTree* tree = new BinaryIndexedTree(n);
for (auto& e : bookings) {
int first = e[0], last = e[1], seats = e[2];
tree->update(first, seats);
tree->update(last + 1, -seats);
}
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
ans[i] = tree->query(i + 1);
}
return ans;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += x & -x
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= x & -x
}
return s
}
func corpFlightBookings(bookings [][]int, n int) []int {
tree := newBinaryIndexedTree(n)
for _, e := range bookings {
first, last, seats := e[0], e[1], e[2]
tree.update(first, seats)
tree.update(last+1, -seats)
}
ans := make([]int, n)
for i := range ans {
ans[i] = tree.query(i + 1)
}
return ans
}