comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1633 |
Weekly Contest 138 Q3 |
|
Given an array of positive integers arr
(not necessarily distinct), return the lexicographically largest permutation that is smaller than arr
, that can be made with exactly one swap. If it cannot be done, then return the same array.
Note that a swap exchanges the positions of two numbers arr[i]
and arr[j]
Example 1:
Input: arr = [3,2,1] Output: [3,1,2] Explanation: Swapping 2 and 1.
Example 2:
Input: arr = [1,1,5] Output: [1,1,5] Explanation: This is already the smallest permutation.
Example 3:
Input: arr = [1,9,4,6,7] Output: [1,7,4,6,9] Explanation: Swapping 9 and 7.
Constraints:
1 <= arr.length <= 104
1 <= arr[i] <= 104
First, we traverse the array from right to left, find the first index
If we traverse the entire array and do not find an index
The time complexity is
class Solution:
def prevPermOpt1(self, arr: List[int]) -> List[int]:
n = len(arr)
for i in range(n - 1, 0, -1):
if arr[i - 1] > arr[i]:
for j in range(n - 1, i - 1, -1):
if arr[j] < arr[i - 1] and arr[j] != arr[j - 1]:
arr[i - 1], arr[j] = arr[j], arr[i - 1]
return arr
return arr
class Solution {
public int[] prevPermOpt1(int[] arr) {
int n = arr.length;
for (int i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (int j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] != arr[j - 1]) {
int t = arr[i - 1];
arr[i - 1] = arr[j];
arr[j] = t;
return arr;
}
}
}
}
return arr;
}
}
class Solution {
public:
vector<int> prevPermOpt1(vector<int>& arr) {
int n = arr.size();
for (int i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (int j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] != arr[j - 1]) {
swap(arr[i - 1], arr[j]);
return arr;
}
}
}
}
return arr;
}
};
func prevPermOpt1(arr []int) []int {
n := len(arr)
for i := n - 1; i > 0; i-- {
if arr[i-1] > arr[i] {
for j := n - 1; j > i-1; j-- {
if arr[j] < arr[i-1] && arr[j] != arr[j-1] {
arr[i-1], arr[j] = arr[j], arr[i-1]
return arr
}
}
}
}
return arr
}
function prevPermOpt1(arr: number[]): number[] {
const n = arr.length;
for (let i = n - 1; i > 0; --i) {
if (arr[i - 1] > arr[i]) {
for (let j = n - 1; j > i - 1; --j) {
if (arr[j] < arr[i - 1] && arr[j] !== arr[j - 1]) {
const t = arr[i - 1];
arr[i - 1] = arr[j];
arr[j] = t;
return arr;
}
}
}
}
return arr;
}